EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由液面对艇后螺旋桨性能的影响研究

李鹏 王超 韩阳 郐云飞 王世民

李鹏, 王超, 韩阳, 郐云飞, 王世民. 自由液面对艇后螺旋桨性能的影响研究. 力学学报, 2021, 53(9): 2501-2514 doi: 10.6052/0459-1879-21-063
引用本文: 李鹏, 王超, 韩阳, 郐云飞, 王世民. 自由液面对艇后螺旋桨性能的影响研究. 力学学报, 2021, 53(9): 2501-2514 doi: 10.6052/0459-1879-21-063
Li Peng, Wang Chao, Han Yang, Kuai Yunfei, Wang Shimin. The study about the impact of the free-surface on the performance of the propeller attached at the stern of a submarine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2501-2514 doi: 10.6052/0459-1879-21-063
Citation: Li Peng, Wang Chao, Han Yang, Kuai Yunfei, Wang Shimin. The study about the impact of the free-surface on the performance of the propeller attached at the stern of a submarine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2501-2514 doi: 10.6052/0459-1879-21-063

自由液面对艇后螺旋桨性能的影响研究

doi: 10.6052/0459-1879-21-063
基金项目: 基础产品创新科研项目资助(CZ380)
详细信息
    作者简介:

    韩阳, 实验师, 主要研究方向: 船舶实验测试技术. E-mail: hanyang@hrbeu.edu.cn

  • 中图分类号: U661.1

THE STUDY ABOUT THE IMPACT OF THE FREE-SURFACE ON THE PERFORMANCE OF THE PROPELLER ATTACHED AT THE STERN OF A SUBMARINE

  • 摘要: 靠近自由液面航行的潜艇, 自身绕流特性较其在深水区域会有所改变, 从而影响艇后螺旋桨的性能表现, 进而增加潜艇安全航行的风险. 为了探究自由液面存在对艇后螺旋桨性能的影响, 本文利用URANS方程耦合$ k - \omega $湍流模型, 基于Star CCM+求解器对潜艇自航模(Sub-off+E1619桨)在近自由液面航行时的性能进行数值仿真计算. 首先, 通过对比可获取的实验数据, 数据包括无限潜深下全附体艇体阻力实验数据、多潜深条件下旋转体阻力实验数据和螺旋桨敞水实验数据, 验证数值模拟方法的正确性; 接着, 基于3套不同密度的网格开展网格收敛性分析, 确保数值模拟的准确性; 最后, 对2个潜深、3个航速下潜艇自航模的性能进行仿真计算, 分析自由液面对自航模螺旋桨性能的影响. 结果表明, 自由液面的存在首先会增加潜艇自航模自航点对应的螺旋桨转速; 另外, 自由液面的兴波和艇体壁面形成的类喷嘴流动与转速变化有关, 类喷嘴流动和桨的抽吸作用共同改变桨叶剖面的迎流攻角, 使得桨叶靠近或远离自由液面会显著改变螺旋桨的载荷.

     

  • 图  1  几何模型

    Figure  1.  Geometry

    图  2  2种计算域

    Figure  2.  Two sets of computational domain

    图  3  有限潜深条件下中网格示意图

    Figure  3.  Grid-medium used for shallowly submerged

    图  4  部分验证网格示意图

    Figure  4.  Sketch of the grids used for validation

    图  5  全附体Sub-off模型阻力–航速曲线

    Figure  5.  R–U curve of the all-appendage Sub-off

    图  6  E1619桨敞水曲线

    Figure  6.  The OWC of the E1619

    图  7  艇体和螺旋桨的水动力系数变化

    Figure  7.  The changes of hydrodynamic loads of hull

    图  8  兴波模式

    Figure  8.  Wave pattern

    图  9  15 kn航速不同潜深下艇体周围流场

    Figure  9.  The flow field around Sub-off at 15 kn under various depths

    图  10  潜深1Dsub时不同航速y=0平面流场

    Figure  10.  The flow field around Sub-off navigating under 1Dsub from the free-surface with various velocities

    图  11  螺旋桨近前方轴向速度云图

    Figure  11.  The axial velocity before propeller

    图  12  桨叶剖面速度三角形

    Figure  12.  The velocity triangle in blade profile plane

    图  13  0.7Rpro桨叶攻角变化

    Figure  13.  The attack angle (α) at 0.7Rpro

    图  14  螺旋桨近前方0.7Rpro处来流径向速度周向平均曲线

    Figure  14.  Circumferentially averaged radial velocities beforepropeller at 0.7Rpro

    图  15  螺旋桨近前方涡量云图

    Figure  15.  The $ \omega $ before propeller

    图  16  单个桨叶载荷旋转周期平均曲线

    Figure  16.  Circle-average blade hydrodynamics

    图  17  单个桨叶时历载荷的谐波分析

    Figure  17.  Harmonic analysis of hydrodynamics of single blade

    图  18  横向兴波模式和桨叶表面压力系数

    Figure  18.  Wave pattern and CP in blades

    表  1  Sub-off模型几何参数

    Table  1.   Geometric parameters of Sub-off model

    ItemsStandard geometryGeometry here
    $ {L_{{\rm{sub}}}} $ 4.356 3.000
    $ {L_{{\rm{pro}}}} $ 4.261 2.935
    $ {D_{{\rm{sub}}}} $ 0.508 0.350
    下载: 导出CSV

    表  2  E1619的主要参数

    Table  2.   Main parameters of E1619 propeller

    ItemsStandard geometryGeometry here
    blades 7 7
    Dpro 0.485 0.180
    Dhub/Dpro 0.226 0.226
    P0.7Rpro 1.15 1.15
    c0.7Rpro 6.8 4.7
    下载: 导出CSV

    表  3  不同网格方案的详细网格信息

    Table  3.   The cells contained in various grids

    (a)无限潜深
    (a)Totally submerged
    GridsCoarse gridMedium gridFine grid
    refined region near sail430 000600 000720 000
    refined region near rudders320 000480 000595 000
    refined region near revolution198 000330 000412 000
    refined region near freesurface
    rotational domain1 845 0002 790 0003 745 000
    static domain3 630 0004 130 0004 760 000
    total6 423 0007 990 00010 473 000
    (b)有限潜深
    (b)Finitely submerged
    GridsCoarse gridMedium gridFine grid
    refined region near freesurface1 210 0001 950 0002 432 000
    rotational domain1 845 0002 790 0003 745 000
    static domain3 630 0004 130 0004 760 000
    total7 633 0009 940 00012 905 000
    下载: 导出CSV

    表  4  计算工况信息

    Table  4.   The cases listed in this paper

    Case No.HU
    1$ \mathrm{\infty } $5
    2$ \mathrm{\infty } $10
    3$ \mathrm{\infty } $15
    40.35Dsub5
    50.35Dsub10
    60.35Dsub15
    下载: 导出CSV

    表  5  数值模拟方法验证网格信息

    Table  5.   Characteristics of the grids used for validation

    (a) Sub-off标准模型阻力计算网格信息
    (a) Details of the grid for the hydrodynamics of Sub-off
    RevolutionSailRuddersTotal
    100 00010 00010 000 × 4
    BladesRotational domainStatic domain6 000 000
    7 500 × 71 500 0004 500 000
    (b) 多潜深裸艇体阻力计算网格信息
    (b) Details of the grid for the hydrodynamics of the bare hull
    RevolutionRefined region near freesurfaceTotal
    50 00065 0002 100 000
    (c) E1619桨敞水性能计算网格信息
    (c) Details of the grid for the isolated E1619
    BladesBossRotational domainStatic domainTotal
    10 500 × 710001 200 0001 500 0002 700 000
    下载: 导出CSV

    表  6  旋转体不同潜深、航速下地阻力系数(扩大1000倍)

    Table  6.   1000 × CR of the revolution with various depths (The results from this paper are in backets)

    FrH
    0.130.280.360.510.64
    1.1D1.598 (1.579)2.1961.373 (1.367)2.8202.408 (2.387)
    1.3D1,543 (1.521)1.7571.337 (1.325)2.4212.247 (2.237)
    2.2D1.526 (1.531)1.3181.192 (1.185)1.5291.534 (1.554)
    3.3D1.597 (1.601)1.3361.210 (1.218)1.302 (1.354)
    4.4D1.687 (1.659)1.3731.283 (1.295)1.2531.248 (1.262)
    下载: 导出CSV

    表  7  有限潜深艇体计算结果

    Table  7.   Hydrodynamics of the sub-off navigating finitely submerged

    VariablesCoarse gridMedium gridFine grid
    1000CR1.6981.7981.821
    1000CLF16.9817.3517.55
    1000CPM0.0510.0580.061
    下载: 导出CSV

    表  8  有限潜深螺旋桨推力及扭矩系数

    Table  8.   $ {C}_{{\rm{T}}} $ and $ {C}_{{\rm{Q}}} $ of the propeller attached at the stern of the Sub-off navigating finitely submerged

    VariablesCoarse gridMedium gridFine grid
    CT0.2530.2700.270
    10CQ0.6350.6520.667
    下载: 导出CSV

    表  9  有限潜深艇体计算结果

    Table  9.   Hydrodynamics of the Sub-off navigating finitely submerged

    VariablesRGPGUG
    1000CR0.23020.084
    1000CLF0.54120.076
    1000CPM0.42820.340
    下载: 导出CSV

    表  10  有限潜深螺旋桨推力及扭矩系数

    Table  10.   $ {C}_{{\rm{T}}} $ and $ {C}_{{\rm{Q}}} $ of the propeller attached at the stern of he Sub-off navigating finitely submerged

    VariablesRGPGUG
    CT0.8531.6900.423
    10CQ0.8821.3000.240
    下载: 导出CSV

    表  11  自航点计算结果

    Table  11.   Self-propulsion

    (a) 按潜深区分计算结果
    (a) Cases divided by depths
    Case groupCase No.nselfIncrement
    1 1 12.70 0 (basement)
    2 25.00 96.85
    3 36.65 188.58
    2 4 19.20 0 (basement)
    5 27.65 44.01
    6 37.40 94.79
    (b) 按航速区分计算结果
    (b) Cases divided by velocities
    Case group Case No. nself Increment
    3 1 12.70 0 (basement)
    4 19.20 51.18
    4 2 25.00 0 (basement)
    5 27.65 10.60
    5 3 36.65 0 (basement)
    6 37.40 2.05
    下载: 导出CSV

    表  12  艇体和螺旋桨平均水动力系数

    Table  12.   The mean hydro-coefficients of hull and propeller

    Case No.123456
    1000CR1.3431.3621.2313.6631.7981.342
    CT0.2360.2470.2340.3230.2700.246
    下载: 导出CSV

    表  13  螺旋桨近前方轴向伴流分数(wi)

    Table  13.   The mean axial wake fraction (wi) before propeller

    H$D_{\rm{sub}}$$\infty D_{\rm{sub}}$
    U/kn5101551015
    wi /%2.0715.3619.1425.7620.8620.11
    下载: 导出CSV

    表  14  单个桨叶水动力载荷的统计学结果

    Table  14.   The statistics of hydrodynamics act on single blade

    Case No.CTCQ
    Meanr.m.sMeanr.m.s
    1 0.033 4 0.001 03 0.006 8 0.000 10
    2 0.034 9 0.001 02 0.006 9 0.000 10
    3 0.032 9 0.001 12 0.006 7 0.000 17
    4 0.044 3 0.002 48 0.008 8 0.031 60
    5 0.037 4 0.004 10 0.008 9 0.028 83
    6 0.034 2 0.003 60 0.008 9 0.027 10
    下载: 导出CSV

    表  15  螺旋桨水动力载荷统计学结果

    Table  15.   The statistics of hydrodynamics acted on propeller

    Case No.CTCQCTS
    Meanr.m.sMeanr.m.sMeanr.m.s
    10.23640.00060.00860.00000.00070.0004
    20.24700.00050.00870.00000.00080.0005
    30.23390.00060.04670.00010.00080.0004
    40.33250.00060.06170.00030.00880.0002
    50.26990.00030.06520.00040.00820.0003
    60.24600.00360.06010.00100.00730.0005
    下载: 导出CSV
  • [1] Orihara H, Miyata H. Evaluation of added resistance in regular incident waves by computational fluid dynamics motion simulation using an overlapping grid system. Journal Marine Science Technology, 2003, 8: 47-60 doi: 10.1007/s00773-003-0163-5
    [2] Arribas FP. Some methods to obtain the added resistance of a ship advancing in waves. Ocean Engineering, 2007, 34: 946-955 doi: 10.1016/j.oceaneng.2006.06.002
    [3] Liu S, Papanikoaou A, Zaraphonitis G. Prediction of added resistance of ships in waves. Ocean Engineering, 2011, 38: 641-650 doi: 10.1016/j.oceaneng.2010.12.007
    [4] Sadat-Hosseini H, Wu PC, Carrica PM, et al. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean Engineering, 2013, 59: 240-273 doi: 10.1016/j.oceaneng.2012.12.016
    [5] Cansın Özden M, Gürkan AY, Özden YA, et al. Underwater radiated noise prediction for a submarine propeller in different flow conditions. Ocean Engineering, 2016, 126: 488-500 doi: 10.1016/j.oceaneng.2016.06.012
    [6] Gong J, Guo C, Zhao D, et al. A comparative DES study of wake vortex evolution for ducted and non-ducted propellers. Ocean Engineering, 2018, 160: 78-93 doi: 10.1016/j.oceaneng.2018.04.054
    [7] Chase N. Simulations of the DARPA Suboff submarine including self-propulsion with the E1619 propeller. [Master's Thesis]. Iowa: University of Iowa, 2012: 67-72
    [8] Paik BG, Lee JY, Lee SJ. Effect of propeller immersion depth on the flow around a marine propeller. Journal Ship Research, 2008, 52: 102-113
    [9] Baek DG, Yoon HS, Jung JH, et al. Effects of the advance ratio on the evolution of a propeller wake. Computer & Fluids, 2015, 118: 32-43
    [10] Kozlowska AM, Steen S, Koushan K. Classification of different type of propeller ventilation and ventilation inception mechanism//First International Symposium on Marine Propulors, 2009
    [11] Kozlowska AM, W€ockner K, Steen S, et al. Numerical and experimental study of propeller ventilation//Second International Symposium on Marine Propulors, 2011
    [12] Califano A, Steen S. Numerical simulations of a fully submerged propeller subject to ventilation. Ocean Engineering, 2011, 38: 1582-1599 doi: 10.1016/j.oceaneng.2011.07.010
    [13] Paik BG, Lee JY, Lee SJ. Effect of propeller immersion depth on the flow around a marine propeller. Journal of Ship Research, 2008, 52: 102-113
    [14] Li Y, Martin E, Michael T, et al. A study of propeller operation near a free surface. Journal Ship Research, 2015, 59: 190-200 doi: 10.5957/jsr.2015.59.3.190
    [15] Wang C, Sun SX, Sun S, et al. Numerical analysis of propeller exciting force in oblique flow. Journal of Marine and Science Technology, 2017, 22: 602-619 doi: 10.1007/s00773-017-0431-4
    [16] Paik KJ. Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(6): 655-667
    [17] Amiri MM, Esperança PT, Vitola MA, et al. How does the free surface affect the hydrodynamics of a shallowly submerged submarine? Applied Ocean Research, 2018, 76: 34-50 doi: 10.1016/j.apor.2018.04.008
    [18] Shariati SK, Mousavizadegan SH. The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface. Applied Ocean Research, 2017, 67: 31-43 doi: 10.1016/j.apor.2017.07.001
    [19] Daum S, Greve M, Skejic R. Effective power and speed loss of underwater vehicles in close proximity to regular waves//Proceeding of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim, 2017, 12: 369
    [20] Skejic R, Jullumstrø E. Power performance and environmental footprint of high-speed vessels in calm deep water//Proceeding of the 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, 2012, 4: 381-393
    [21] Amiri MM, Sphaier SH, Vitola MA, et al. URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift. Applied Ocean Research, 2019, 84: 192-205 doi: 10.1016/j.apor.2019.01.012
    [22] Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149
    [23] Groves N. Huang TT. Geometric characteristics of DARPA Suboff models (DTRC Models Nos. 5470 and 5471). 1989, 1298-01: 1-75
    [24] Felice FD, Felli M, Liefvendahl M, et al. Numerical and experimental analysis of the wake behavior of a generic submarine propeller//Proceeding 1st International Symposium on Marine Propulsors, 2009
    [25] Spence S. Numerical investigation of free surface flows. [Master's Thesis], California: Institutt for Marin Teknikk, 2014: 112-132
    [26] Pan Y, Zhang H, Zhou Q. Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver. International Journal of Naval Architecture and Ocean Engineering, 2019, 11: 899-913 doi: 10.1016/j.ijnaoe.2019.04.002
    [27] Liu HL, Huang TT. Summary of DARPA Sub-off Experimental Program Data. Naval Surface Warfare Center, 1998
    [28] Dawson E. An investigation into the effects of submergence depth, speed and hull length-to-diameter ratio on the nearsurface operation of conventional submarines. [Master's Thesis], Tasmania: University of Tasmania, 2014: 98-102
    [29] Felice FD, Felli M, Liefvendahl M, et al. Numerical and experimental analysis of the wake behavior of a generic submarine propeller//Proceeding of 1st International Symposium on Marine Propulsors, 2009
    [30] McHale M, Friedman J. Standard for verification and validation in computational fluid dynamics and heat transfer. ASME V&V, 2009: 2000-2009
    [31] Roache PJ. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 1997, 29: 123-160 doi: 10.1146/annurev.fluid.29.1.123
    [32] Wei M, Chiew YM. Impingement of propeller jet on a vertical quay wall. Ocean Engineering, 2019, 183: 73-86 doi: 10.1016/j.oceaneng.2019.04.071
    [33] Stern F, Wilson R, Coleman HW, et al. Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures. Journal of Fluid Engineering, 2001, 123(4): 792
    [34] Groves C, Ilie M, Schallhorn P. Comprehensive approach to verification and validation of CFD simulations applied to backward facing step-application of CFD uncertainty analysis. AIAA Paper 1964-1981, 2013
    [35] Chase N. Simulations of the DARPA Sub-off submarine including self-propulsion with the E1619 propeller. [Master's Thesis]. Iowa: University of Iowa, America, 2012: 87-99
    [36] Chase N, Carrica PM. Submarine propeller computations and application to self-propulsion of DARPA suboff. Ocean Engineering, 2013, 60: 68-80 doi: 10.1016/j.oceaneng.2012.12.029
    [37] Ponkratov DD. DES prediction of cavitation erosion and its validation for a ship scale propeller. Journal of Physics: Conference Series, 2015, 656: 012055 doi: 10.1088/1742-6596/656/1/012055
    [38] Tatar TF, Talip K. The effect of an ultrasonic spray nozzle on carbohydrate and protein-based coating materials for blueberry extract microencapsulation. Journal of Science of Food and Agriculture, 2021, 101(1): 120-130 doi: 10.1002/jsfa.10622
    [39] Liu YW, Li YL, Shang DJ. The hydrodynamic noise suppression of a scaled submarine model by leading-edge serrations. Journal of Marine Science and Engineering, 2019, 7(68): 1-27
    [40] Wang L, Martin J, Ezequiel F, et al. Experiments and CFD for the propeller wake of a generic submarine operating near the surface. Ocean Engineering, 2020, 206: 1-17
  • 加载中
图(18) / 表(15)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  121
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 录用日期:  2021-08-20
  • 网络出版日期:  2021-08-21
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回