THE STUDY ABOUT THE IMPACT OF THE FREE-SURFACE ON THE PERFORMANCE OF THE PROPELLER ATTACHED AT THE STERN OF A SUBMARINE
-
摘要: 靠近自由液面航行的潜艇, 自身绕流特性较其在深水区域会有所改变, 从而影响艇后螺旋桨的性能表现, 进而增加潜艇安全航行的风险. 为了探究自由液面存在对艇后螺旋桨性能的影响, 本文利用URANS方程耦合
$ k - \omega $ 湍流模型, 基于Star CCM+求解器对潜艇自航模(Sub-off+E1619桨)在近自由液面航行时的性能进行数值仿真计算. 首先, 通过对比可获取的实验数据, 数据包括无限潜深下全附体艇体阻力实验数据、多潜深条件下旋转体阻力实验数据和螺旋桨敞水实验数据, 验证数值模拟方法的正确性; 接着, 基于3套不同密度的网格开展网格收敛性分析, 确保数值模拟的准确性; 最后, 对2个潜深、3个航速下潜艇自航模的性能进行仿真计算, 分析自由液面对自航模螺旋桨性能的影响. 结果表明, 自由液面的存在首先会增加潜艇自航模自航点对应的螺旋桨转速; 另外, 自由液面的兴波和艇体壁面形成的类喷嘴流动与转速变化有关, 类喷嘴流动和桨的抽吸作用共同改变桨叶剖面的迎流攻角, 使得桨叶靠近或远离自由液面会显著改变螺旋桨的载荷.Abstract: The performance of the propeller attached at the stern of the submarine navigating under limited depths is affected obviously by the free-surface, duo to the changes of the flow field characteristics around this vehicle. And what mentioned above will greatly threaten the security of the maneuverability of the submarine. To figure out the effect of the free-surface on the performance of the propeller attached at the stern of the submarine. In this paper, the URANS (unsteady Reynold average Navier−Stokes) equations coupled with$ k - \omega $ turbulence model are used for the numerical simulations about performance of the self-propulsion model (the standard Sub-off geometry and the E1619 propeller). At first, the experimental data available including the resistance tests of the submarine with all appendages under total submergence, the resistance tests of the revolution with different navigating depths and the OWC (open water curve) of the propeller, is used for the validation of the numerical method adopted in this paper. Next, the correctness of the numerical method is acquired based on three sets of grids with different spatial resolutions. Finally, the performance of the self-propulsion model navigating under two depths and three different velocities is simulated carefully to figure out the effect of the free-surface on the performance of the self-model. The numerical results show that the exitance of the free surface increases the rotational speed of the propeller at a specific navigating speed, which corresponds to the self-propulsion point. The increment mentioned above is related to the wave pattern induced by the submarine. The wave pattern will cause the nozzle-like flow between submarine and free-surface. The nozzle-like flow and the suction of the propeller change the angle of attack of the blade profile at different radial sections. Meanwhile, approaching and getting away from free surface will also significantly change the hydrodynamic loads of the propeller.-
Key words:
- self-propulsion model /
- free-surface /
- wave pattern /
- attack angle
-
表 1 Sub-off模型几何参数
Table 1. Geometric parameters of Sub-off model
Items Standard geometry Geometry here $ {L_{{\rm{sub}}}} $ 4.356 3.000 $ {L_{{\rm{pro}}}} $ 4.261 2.935 $ {D_{{\rm{sub}}}} $ 0.508 0.350 表 2 E1619的主要参数
Table 2. Main parameters of E1619 propeller
Items Standard geometry Geometry here blades 7 7 Dpro 0.485 0.180 Dhub/Dpro 0.226 0.226 P0.7Rpro 1.15 1.15 c0.7Rpro 6.8 4.7 表 3 不同网格方案的详细网格信息
Table 3. The cells contained in various grids
(a)无限潜深
(a)Totally submergedGrids Coarse grid Medium grid Fine grid refined region near sail 430 000 600 000 720 000 refined region near rudders 320 000 480 000 595 000 refined region near revolution 198 000 330 000 412 000 refined region near freesurface − − − rotational domain 1 845 000 2 790 000 3 745 000 static domain 3 630 000 4 130 000 4 760 000 total 6 423 000 7 990 000 10 473 000 (b)有限潜深
(b)Finitely submergedGrids Coarse grid Medium grid Fine grid refined region near freesurface 1 210 000 1 950 000 2 432 000 rotational domain 1 845 000 2 790 000 3 745 000 static domain 3 630 000 4 130 000 4 760 000 total 7 633 000 9 940 000 12 905 000 表 4 计算工况信息
Table 4. The cases listed in this paper
Case No. H U 1 $ \mathrm{\infty } $ 5 2 $ \mathrm{\infty } $ 10 3 $ \mathrm{\infty } $ 15 4 0.35Dsub 5 5 0.35Dsub 10 6 0.35Dsub 15 表 5 数值模拟方法验证网格信息
Table 5. Characteristics of the grids used for validation
(a) Sub-off标准模型阻力计算网格信息
(a) Details of the grid for the hydrodynamics of Sub-offRevolution Sail Rudders Total 100 000 10 000 10 000 × 4 Blades Rotational domain Static domain 6 000 000 7 500 × 7 1 500 000 4 500 000 (b) 多潜深裸艇体阻力计算网格信息
(b) Details of the grid for the hydrodynamics of the bare hullRevolution Refined region near freesurface Total 50 000 65 000 2 100 000 (c) E1619桨敞水性能计算网格信息
(c) Details of the grid for the isolated E1619Blades Boss Rotational domain Static domain Total 10 500 × 7 1000 1 200 000 1 500 000 2 700 000 表 6 旋转体不同潜深、航速下地阻力系数(扩大1000倍)
Table 6. 1000 × CR of the revolution with various depths (The results from this paper are in backets)
Fr H 0.13 0.28 0.36 0.51 0.64 1.1D 1.598 (1.579) 2.196 1.373 (1.367) 2.820 2.408 (2.387) 1.3D 1,543 (1.521) 1.757 1.337 (1.325) 2.421 2.247 (2.237) 2.2D 1.526 (1.531) 1.318 1.192 (1.185) 1.529 1.534 (1.554) 3.3D 1.597 (1.601) 1.336 1.210 (1.218) − 1.302 (1.354) 4.4D 1.687 (1.659) 1.373 1.283 (1.295) 1.253 1.248 (1.262) 表 7 有限潜深艇体计算结果
Table 7. Hydrodynamics of the sub-off navigating finitely submerged
Variables Coarse grid Medium grid Fine grid 1000CR 1.698 1.798 1.821 1000CLF 16.98 17.35 17.55 1000CPM 0.051 0.058 0.061 表 8 有限潜深螺旋桨推力及扭矩系数
Table 8.
$ {C}_{{\rm{T}}} $ and$ {C}_{{\rm{Q}}} $ of the propeller attached at the stern of the Sub-off navigating finitely submergedVariables Coarse grid Medium grid Fine grid CT 0.253 0.270 0.270 10CQ 0.635 0.652 0.667 表 9 有限潜深艇体计算结果
Table 9. Hydrodynamics of the Sub-off navigating finitely submerged
Variables RG PG UG 1000CR 0.230 2 0.084 1000CLF 0.541 2 0.076 1000CPM 0.428 2 0.340 表 10 有限潜深螺旋桨推力及扭矩系数
Table 10.
$ {C}_{{\rm{T}}} $ and$ {C}_{{\rm{Q}}} $ of the propeller attached at the stern of he Sub-off navigating finitely submergedVariables RG PG UG CT 0.853 1.690 0.423 10CQ 0.882 1.300 0.240 表 11 自航点计算结果
Table 11. Self-propulsion
(a) 按潜深区分计算结果
(a) Cases divided by depthsCase group Case No. nself Increment 1 1 12.70 0 (basement) 2 25.00 96.85 3 36.65 188.58 2 4 19.20 0 (basement) 5 27.65 44.01 6 37.40 94.79 (b) 按航速区分计算结果
(b) Cases divided by velocitiesCase group Case No. nself Increment 3 1 12.70 0 (basement) 4 19.20 51.18 4 2 25.00 0 (basement) 5 27.65 10.60 5 3 36.65 0 (basement) 6 37.40 2.05 表 12 艇体和螺旋桨平均水动力系数
Table 12. The mean hydro-coefficients of hull and propeller
Case No. 1 2 3 4 5 6 1000CR 1.343 1.362 1.231 3.663 1.798 1.342 CT 0.236 0.247 0.234 0.323 0.270 0.246 表 13 螺旋桨近前方轴向伴流分数(wi)
Table 13. The mean axial wake fraction (wi) before propeller
H $D_{\rm{sub}}$ $\infty D_{\rm{sub}}$ U/kn 5 10 15 5 10 15 wi /% 2.07 15.36 19.14 25.76 20.86 20.11 表 14 单个桨叶水动力载荷的统计学结果
Table 14. The statistics of hydrodynamics act on single blade
Case No. CT CQ Mean r.m.s Mean r.m.s 1 0.033 4 0.001 03 0.006 8 0.000 10 2 0.034 9 0.001 02 0.006 9 0.000 10 3 0.032 9 0.001 12 0.006 7 0.000 17 4 0.044 3 0.002 48 0.008 8 0.031 60 5 0.037 4 0.004 10 0.008 9 0.028 83 6 0.034 2 0.003 60 0.008 9 0.027 10 表 15 螺旋桨水动力载荷统计学结果
Table 15. The statistics of hydrodynamics acted on propeller
Case No. CT CQ CTS Mean r.m.s Mean r.m.s Mean r.m.s 1 0.2364 0.0006 0.0086 0.0000 0.0007 0.0004 2 0.2470 0.0005 0.0087 0.0000 0.0008 0.0005 3 0.2339 0.0006 0.0467 0.0001 0.0008 0.0004 4 0.3325 0.0006 0.0617 0.0003 0.0088 0.0002 5 0.2699 0.0003 0.0652 0.0004 0.0082 0.0003 6 0.2460 0.0036 0.0601 0.0010 0.0073 0.0005 -
[1] Orihara H, Miyata H. Evaluation of added resistance in regular incident waves by computational fluid dynamics motion simulation using an overlapping grid system. Journal Marine Science Technology, 2003, 8: 47-60 doi: 10.1007/s00773-003-0163-5 [2] Arribas FP. Some methods to obtain the added resistance of a ship advancing in waves. Ocean Engineering, 2007, 34: 946-955 doi: 10.1016/j.oceaneng.2006.06.002 [3] Liu S, Papanikoaou A, Zaraphonitis G. Prediction of added resistance of ships in waves. Ocean Engineering, 2011, 38: 641-650 doi: 10.1016/j.oceaneng.2010.12.007 [4] Sadat-Hosseini H, Wu PC, Carrica PM, et al. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean Engineering, 2013, 59: 240-273 doi: 10.1016/j.oceaneng.2012.12.016 [5] Cansın Özden M, Gürkan AY, Özden YA, et al. Underwater radiated noise prediction for a submarine propeller in different flow conditions. Ocean Engineering, 2016, 126: 488-500 doi: 10.1016/j.oceaneng.2016.06.012 [6] Gong J, Guo C, Zhao D, et al. A comparative DES study of wake vortex evolution for ducted and non-ducted propellers. Ocean Engineering, 2018, 160: 78-93 doi: 10.1016/j.oceaneng.2018.04.054 [7] Chase N. Simulations of the DARPA Suboff submarine including self-propulsion with the E1619 propeller. [Master's Thesis]. Iowa: University of Iowa, 2012: 67-72 [8] Paik BG, Lee JY, Lee SJ. Effect of propeller immersion depth on the flow around a marine propeller. Journal Ship Research, 2008, 52: 102-113 [9] Baek DG, Yoon HS, Jung JH, et al. Effects of the advance ratio on the evolution of a propeller wake. Computer & Fluids, 2015, 118: 32-43 [10] Kozlowska AM, Steen S, Koushan K. Classification of different type of propeller ventilation and ventilation inception mechanism//First International Symposium on Marine Propulors, 2009 [11] Kozlowska AM, W€ockner K, Steen S, et al. Numerical and experimental study of propeller ventilation//Second International Symposium on Marine Propulors, 2011 [12] Califano A, Steen S. Numerical simulations of a fully submerged propeller subject to ventilation. Ocean Engineering, 2011, 38: 1582-1599 doi: 10.1016/j.oceaneng.2011.07.010 [13] Paik BG, Lee JY, Lee SJ. Effect of propeller immersion depth on the flow around a marine propeller. Journal of Ship Research, 2008, 52: 102-113 [14] Li Y, Martin E, Michael T, et al. A study of propeller operation near a free surface. Journal Ship Research, 2015, 59: 190-200 doi: 10.5957/jsr.2015.59.3.190 [15] Wang C, Sun SX, Sun S, et al. Numerical analysis of propeller exciting force in oblique flow. Journal of Marine and Science Technology, 2017, 22: 602-619 doi: 10.1007/s00773-017-0431-4 [16] Paik KJ. Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(6): 655-667 [17] Amiri MM, Esperança PT, Vitola MA, et al. How does the free surface affect the hydrodynamics of a shallowly submerged submarine? Applied Ocean Research, 2018, 76: 34-50 doi: 10.1016/j.apor.2018.04.008 [18] Shariati SK, Mousavizadegan SH. The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface. Applied Ocean Research, 2017, 67: 31-43 doi: 10.1016/j.apor.2017.07.001 [19] Daum S, Greve M, Skejic R. Effective power and speed loss of underwater vehicles in close proximity to regular waves//Proceeding of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim, 2017, 12: 369 [20] Skejic R, Jullumstrø E. Power performance and environmental footprint of high-speed vessels in calm deep water//Proceeding of the 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, 2012, 4: 381-393 [21] Amiri MM, Sphaier SH, Vitola MA, et al. URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift. Applied Ocean Research, 2019, 84: 192-205 doi: 10.1016/j.apor.2019.01.012 [22] Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149 [23] Groves N. Huang TT. Geometric characteristics of DARPA Suboff models (DTRC Models Nos. 5470 and 5471). 1989, 1298-01: 1-75 [24] Felice FD, Felli M, Liefvendahl M, et al. Numerical and experimental analysis of the wake behavior of a generic submarine propeller//Proceeding 1st International Symposium on Marine Propulsors, 2009 [25] Spence S. Numerical investigation of free surface flows. [Master's Thesis], California: Institutt for Marin Teknikk, 2014: 112-132 [26] Pan Y, Zhang H, Zhou Q. Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver. International Journal of Naval Architecture and Ocean Engineering, 2019, 11: 899-913 doi: 10.1016/j.ijnaoe.2019.04.002 [27] Liu HL, Huang TT. Summary of DARPA Sub-off Experimental Program Data. Naval Surface Warfare Center, 1998 [28] Dawson E. An investigation into the effects of submergence depth, speed and hull length-to-diameter ratio on the nearsurface operation of conventional submarines. [Master's Thesis], Tasmania: University of Tasmania, 2014: 98-102 [29] Felice FD, Felli M, Liefvendahl M, et al. Numerical and experimental analysis of the wake behavior of a generic submarine propeller//Proceeding of 1st International Symposium on Marine Propulsors, 2009 [30] McHale M, Friedman J. Standard for verification and validation in computational fluid dynamics and heat transfer. ASME V&V, 2009: 2000-2009 [31] Roache PJ. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 1997, 29: 123-160 doi: 10.1146/annurev.fluid.29.1.123 [32] Wei M, Chiew YM. Impingement of propeller jet on a vertical quay wall. Ocean Engineering, 2019, 183: 73-86 doi: 10.1016/j.oceaneng.2019.04.071 [33] Stern F, Wilson R, Coleman HW, et al. Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures. Journal of Fluid Engineering, 2001, 123(4): 792 [34] Groves C, Ilie M, Schallhorn P. Comprehensive approach to verification and validation of CFD simulations applied to backward facing step-application of CFD uncertainty analysis. AIAA Paper 1964-1981, 2013 [35] Chase N. Simulations of the DARPA Sub-off submarine including self-propulsion with the E1619 propeller. [Master's Thesis]. Iowa: University of Iowa, America, 2012: 87-99 [36] Chase N, Carrica PM. Submarine propeller computations and application to self-propulsion of DARPA suboff. Ocean Engineering, 2013, 60: 68-80 doi: 10.1016/j.oceaneng.2012.12.029 [37] Ponkratov DD. DES prediction of cavitation erosion and its validation for a ship scale propeller. Journal of Physics: Conference Series, 2015, 656: 012055 doi: 10.1088/1742-6596/656/1/012055 [38] Tatar TF, Talip K. The effect of an ultrasonic spray nozzle on carbohydrate and protein-based coating materials for blueberry extract microencapsulation. Journal of Science of Food and Agriculture, 2021, 101(1): 120-130 doi: 10.1002/jsfa.10622 [39] Liu YW, Li YL, Shang DJ. The hydrodynamic noise suppression of a scaled submarine model by leading-edge serrations. Journal of Marine Science and Engineering, 2019, 7(68): 1-27 [40] Wang L, Martin J, Ezequiel F, et al. Experiments and CFD for the propeller wake of a generic submarine operating near the surface. Ocean Engineering, 2020, 206: 1-17 -