EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反射激波作用下三维凹气柱界面演化的数值研究

崔竹轩 丁举春 司廷

崔竹轩, 丁举春, 司廷. 反射激波作用下三维凹气柱界面演化的数值研究[J]. 力学学报, 2021, 53(5): 1246-1256. doi: 10.6052/0459-1879-21-042
引用本文: 崔竹轩, 丁举春, 司廷. 反射激波作用下三维凹气柱界面演化的数值研究[J]. 力学学报, 2021, 53(5): 1246-1256. doi: 10.6052/0459-1879-21-042
Cui Zhuxuan, Ding Juchun, Si Ting. NUMERICAL STUDY ON THE EVOLUTION OF THREE-DIMENSIONAL CONCAVE CYLINDRICAL INTERFACE ACCELERATED BY REFLECTED SHOCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1246-1256. doi: 10.6052/0459-1879-21-042
Citation: Cui Zhuxuan, Ding Juchun, Si Ting. NUMERICAL STUDY ON THE EVOLUTION OF THREE-DIMENSIONAL CONCAVE CYLINDRICAL INTERFACE ACCELERATED BY REFLECTED SHOCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1246-1256. doi: 10.6052/0459-1879-21-042

反射激波作用下三维凹气柱界面演化的数值研究

doi: 10.6052/0459-1879-21-042
基金项目: 1)国家自然科学基金(12027801);国家自然科学基金(91952205);国家自然科学基金(11621202);中国科学院青年创新促进会(2018491)
详细信息
    作者简介:

    2)司廷, 教授, 主要研究方向: 实验流体力学, 复杂界面流动. E-mail:tsi@ustc.edu.cn

    通讯作者:

    司廷

  • 中图分类号: O354.5

NUMERICAL STUDY ON THE EVOLUTION OF THREE-DIMENSIONAL CONCAVE CYLINDRICAL INTERFACE ACCELERATED BY REFLECTED SHOCK

  • 摘要: 激波与气柱相互作用是Richtmyer-Meshkov不稳定性研究的经典案例. 单次激波与二维气柱相互作用已得到广泛关注, 但是反射激波再次冲击气柱 (尤其是三维气柱) 的研究较少, 相关演化规律和机理尚不清楚. 反射激波再次冲击演化中的气柱界面会产生新的斜压涡量, 影响涡量的输运和分布, 从而影响界面的演化. 本文采用自主开发的HOWD (high-order WENO and double-flux methods) 程序, 研究了马赫数为1.29的平面激波冲击N$_{2}$气柱(气柱外为SF$_{6})$的演化过程, 并考察了反射激波对二维和三维凹气柱界面演化的影响规律. 在数值模拟中, 选取了不同的反射距离 (定义为气柱和反射边界的距离), 得到了二维和三维凹气柱在反射激波冲击前后的完整演化图像, 提取了气柱上特征点位置随时间变化的定量数据, 重点分析了不同演化阶段气柱几何特征及斜压涡量分布的变化趋势. 研究表明, 反射距离决定着反射激波作用气柱时的激波形状和气柱形态, 从而影响斜压涡量的生成和分布, 进而改变气柱的不稳定性演化过程. 对于三维气柱, 不同高度截面上的斜压涡量分布不同, 从而诱导出复杂的三维演化结构.

     

  • [1] Richtmyer RD. Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math, 1960,13(2):297-319
    [2] Meshkov EE. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn, 1969,4(5):101-104
    [3] Lindl JD, McCrory RL, Campbell EM. Progress toward ignition and burn propagation in inertial confinement fusion. Phys Today, 1992,45(9):32-40
    [4] Lindl JD, Amendt P, Berger RL, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys Plasmas, 2004,11:339-491
    [5] 徐建于, 黄生洪. 圆柱形汇聚激波诱导Richtmyer-Meshkov不稳定的SPH模拟. 力学学报, 2019,51(4):998-1011

    (Xu Jianyu, Huang Shenghong. Numerical simulation of cylindrical converging shock induced Richtmyer-Meshkov instability with SPH. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):998-1011 (in Chinese))
    [6] Robey HF, MacGowan BJ, Landen OL, et al. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions. Phys Plasmas, 2013,20:052707
    [7] Yang J, Kubota T, Zukoski EE. Application of shock-induced mixing to supersonic combustion. AIAA J, 1993,31(5):854-862
    [8] 汪洋, 董刚. RM 不稳定过程中预混火焰界面演化及混合区增长预测. 力学学报, 2020,52(6):1655-1665

    (Wang Yang, Dong Gang. Interface evolutions and growth predictions of mixing zone on premixed flame interface during RM instability. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1655-1665 (in Chinese))
    [9] Arnett WD, Bahcall JN, Kirshner RP, et al. Supernova 1987A. Annu Rev Astron Astrophys, 2003,27(1):629-700
    [10] Luo XS, Liang Y, Si T, et al. Effects of non-periodic portions of interface on Richtmyer-Meshkov instability. Journal of Fluid Mechanics, 2019,861:309-327
    [11] Guo X, Zhai ZG, Si T, et al. Bubble merger in initial Richtmyer-Meshkov instability on inverse-chevron interface. Physical Review Fluids, 2019,4(9):092001
    [12] 刘金宏, 邹立勇, 曹仁义 等. 绕射激波和反射激波作用下N$_{2}$/SF$_{6}$界面R-M不稳定性实验研究. 力学学报, 2014,46(3):475-479

    (Liu Jinhong, Zou Liyong, Cao Renyi, et al. Experimentally study of the Richtmyer-Meshkov instability at N$_{2}$/SF$_{6}$ flat interface by diffracted incident shock waves and reshock. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(3):475-479 (in Chinese))
    [13] Ding JC, Liang Y, Chen MJ, et al. Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Physics of Fluids, 2018,30(10):106109
    [14] Ding JC, Si T, Chen MJ, et al. On the interaction of planar shock with three-dimensional light gas cylinder. Journal of Fluid Mechanics, 2017,828:289-317
    [15] Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 1987,181:41-76
    [16] Ou JF, Ding JC, Luo XS, et al. Effects of Atwood number on shock focusing in shock-cylinder interaction. Experiments in Fluids, 2018,59(2):29-39
    [17] Ou JF, Zhai ZG. Effects of aspect ratio on shock-cylinder interaction. Acta Mechanica Sinica, 2019,35(1):61-69
    [18] Zou LY, Liao SF, Liu CL, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders. Physics of Fluids, 2016,28(3):036101
    [19] 丛洲洋, 郭旭, 司廷. 反射激波诱导界面不稳定性研究进展. 中国科学: 物理学力学天文学, 2020,50:104703

    (Cong Zhouyang, Guo Xu, Si Ting. Advances in interfacial instability induced by reshock. Sci Sin-Phys Mech Astron, 2020,50:104703 (in Chinese))
    [20] Hill DJ, Pantano C, Pullin DI. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock. Journal of Fluid Mechanics, 2006,557:29-61
    [21] Latini M, Schilling O, Don WS. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability. Journal of Computational Physics, 2007,221(2):805-836
    [22] Schilling O, Latini M. High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data. Acta Math Sci, 2010,30(2):595-620
    [23] Haehn N, Weber C, Oakley J, et al. Experimental investigation of a twice-shocked spherical gas inhomogeneity with particle image velocimetry. Shock Waves, 2011,21(3):225-231
    [24] Jacobs JW, Krivets VV, Tsiklashvili V, et al. Experiments on the Richtmyer-Meshkov instability with an imposed, random initial perturbation. Shock Waves, 2013,23(4):407-413
    [25] Si T, Zhai ZG, Yang JM, et al. Experimental studies of reshocked spherical gas interfaces. Physics of Fluids, 2012,24(5):054101
    [26] Mohaghar M, Carter J, Musci B, et al. Evaluation of turbulent mixing transition in a shock-driven variable-density flow. Journal of Fluid Mechanics, 2017,831:779-825
    [27] Brouillette M, Sturtevant B. Growth induced by multiple shock waves normally incident on plane gaseous interfaces. Physica D, 1989,37(1-3):248-263
    [28] Shankar SK, Kawai S, Lele SK. Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Physics of Fluids, 2011,23(2):024102
    [29] Quirk JJ, Karni S. On the dynamics of a shock-bubble interaction. Journal of Fluid Mechanics, 1996,318:129-163
    [30] Niederhaus JHJ, Greenough JA, Oakley JG, et al. A computational parameter study for the three-dimensional shock-bubble interaction. Journal of Fluid Mechanics, 2008,594:85-124
    [31] Shankar SK, Lele SK. Numerical investigation of turbulence in reshocked Richtmyer-Meshkov unstable curtain of dense gas. Shock Waves, 2014, 24(1): 79-95
    [32] 张赋, 翟志刚, 司廷 等. 反射激波作用下重气柱界面演化的PIV 研究. 实验流体力学, 2014,28(5):13-17

    (Zhang Bin, Zhai Zhigang, Si Ting, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method. Journal of Experiments in Fluid Mechanics, 2014,28(5):13-17 (in Chinese))
    [33] 何惠琴, 翟志刚, 司廷 等. 反射激波作用下两种重气柱界面不稳定性实验研究. 实验流体力学, 2014,28(6):56-60

    (He Huiqin, Zhai Zhigang, Si Ting, et al. Experimental study on the reshocked RM instability of two kinds of heavy gas cylinder. Journal of Experiments in Fluid Mechanics, 2014,28(6):56-60 (in Chinese))
    [34] 王显圣, 司廷, 罗喜胜 等. 反射激波冲击重气柱的RM不稳定性数值研究. 力学学报, 2012,44(4):664-672

    (Wang Xiansheng, Si Ting, Luo Xisheng, et al. Numerical study on the RM instability of a heavy-gas cylinder interacted with reshock. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(4):664-672 (in Chinese))
    [35] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究. 物理学报, 2013,62(14):144701

    (Sha Sha, Chen Zhihua, Xue Dawen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder. Acta Phys Sin, 2013,62(14):144701 (in Chinese))
    [36] 丁举春. 汇聚Richtmyer-Meshkov不稳定性的实验与数值研究. [博士论文]. 合肥: 中国科学技术大学, 2016

    (Ding Juchun. Experimental and numerical study on converging Richtmyer-Meshkov instability. [PhD Thesis]. Hefei: University of Science and Technology of China, 2016 (in Chinese))
    [37] Liu XD, Osher S, Chan T. Weighted Essentially Non-oscillatory schemes. Journal of Computational Physics, 1994,115(1):200-212
    [38] Schilling O, Latini M, Don WS. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Phys Rev E, 2007,76(2):026319
    [39] Wang XS, Yang DG, Wu JQ, et al. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Physics of Fluids, 27(6): 064104, 2015
    [40] 王显圣. 极小曲面特征界面的Richtmyer-Meshkov不稳定性研究. [博士论文]. 合肥: 中国科学技术大学, 2013

    (Wang Xiansheng. The Richtmyer-Meshkov instability on minimum-surface featured interface. [PhD Thesis]. Hefei: University of Science and Technology of China, 2013 (in Chinese))
    [41] Isenberg C. The Science of Soap Films and Soap Bubbles. New York: Dover Publications INC, 1992
  • 加载中
计量
  • 文章访问数:  484
  • HTML全文浏览量:  59
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回