[1] |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 2009, 324(5925): 349-352
|
[2] |
吕昭平, 蒋虽合, 何骏阳 等. 先进金属材料的第二相强化. 金属学报, 2016, 52(10): 1183-1198(Lü Zhaoping, Jiang Suihe, He Junyang, et al. Second phase strengthening in advanced metal materials. Acta Metallurgica Sinica, 2016, 52(10): 1183-1198 (in Chinese))
|
[3] |
Gao X, Yue HY, Guo EJ, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technology, 2016, 301: 601-607
|
[4] |
Qu XH, Zhang L, Wu M, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications. Progress in Natural Science, 2011, 21(3): 189-197
|
[5] |
Li ZD, Lin CG, Cui S. Development of research and application of copper alloys with high strength and high conductivity. Advanced Materials Research, 2014, 1053: 61-68
|
[6] |
Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science & Engineering R-Reports, 2013, 74(10): 281-350
|
[7] |
Li M Q, Zhai H X, Huang Z Y, et al. Microstructure and mechanical properties of TiC0.5 reinforced copper matrix composites. Materials Science and Engineering, 2013, 588(dec. 20): 335-339
|
[8] |
Li MQ, Zhai HX, Huang ZY, et al. Tensile behavior and strengthening mechanism in ultrafine TiC0.5 particle reinforced Cu-Al matrix composites. Journal of Alloys and Compounds, 2015, 628: 186-194
|
[9] |
Schubert T, Ciupiński ?, Zieliński W, et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scripta Mater, 2008, 58(4): 263-266
|
[10] |
Ren SB, Shen XY, Guo CY, et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy. Composites Science and Technology, 2011, 71(13): 1550-1555
|
[11] |
Celebi Efe G, Zeytin S, Bindal C. The effect of SiC particle size on the properties of Cu-SiC composites. Materials and Design, 2012, 36(Apr. ): 633-639
|
[12] |
Prosviryakov AS. SiC content effect on the properties of Cu-SiC composites produced by mechanical alloying. Journal of Alloys and Compounds, 2015, 632: 707-710
|
[13] |
Kiani MT, Murayama M, Gu XW. Deformation of a nanocube with a single incoherent precipitate: Role of precipitate size and dislocation looping. Philosophical Magazine, 2020, 100(13): 1749-1770
|
[14] |
Kiani MT, Wang Y, Bertin N, et al. Strengthening mechanism of a single precipitate in a metallic nanocube. Nano Letter, 2019, 19(1): 255-260
|
[15] |
Huang MS, Zhao LG, Tong J. Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys. International Journal of Plasticity, 2012, 28(1): 141-158
|
[16] |
Cui YN. The Investigation of Plastic Behavior by Discrete Dislocation Dynamics for Single Crystal Pillar at Submicron Scale. Singapore: Springer, 2017: 11-12
|
[17] |
黄敏生, 黄嵩, 梁爽 等. 离散位错动力学算法及其在材料塑性行为模拟中的应用. 科学通报, 2019, 64(18): 1864-1877(Huang Minsheng, Huang Song, Liang Shuang, et al. Discrete dislocation dynamics algorithms and their application in modeling of plastic behaviors of crystalline materials. Chinese Science Bulletin, 2019, 64(18): 1864-1877 (in Chinese))
|
[18] |
Fan HD, Ngan AHW, Gan K, et al. Origin of double-peak precipitation hardening in metallic alloys. International Journal of Plasticity, 2018, 111: 152-167
|
[19] |
Xiang Y, Srolovitz DJ, Cheng LT, et al. Level set simulations of dislocation-particle bypass mechanisms. Acta Materialia, 2004, 52(7): 1745-1760
|
[20] |
Xiang Y, Srolovitz DJ. Dislocation climb effects on particle bypass mechanisms. Philosophical Magazine, 2006, 86(25-26): 3937-3957
|
[21] |
Queyreau S, Monnet G, Devincre B. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Materialia, 2010, 58(17): 5586-5595
|
[22] |
Záleák T, Svoboda J, Dlouhy A. High temperature dislocation processes in precipitation hardened crystals investigated by a 3D discrete dislocation dynamics. International Journal of Plasticity, 2017, 97: 1-23
|
[23] |
Monnet G. Investigation of precipitation hardening by dislocation dynamics simulations. Philosophical Magazine, 2006, 86(36): 5927-5941
|
[24] |
Monnet G, Naamane S, Devincre B. Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations. Acta Materialia, 2011, 59(2): 451-461
|
[25] |
Shin CS, Fivel MC, Verdier M, et al. Dislocation-impenetrable precipitate interaction: A three-dimensional discrete dislocation dynamics analysis. Philosophical Magazine, 2003, 83(31-34): 3691-3704
|
[26] |
Takahashi A, Ghoniem NM. A computational method for dislocation-precipitate interaction. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1534-1553
|
[27] |
Takahashi A, Terada Y. Numerical simulation of dislocation-precipitate interactions using dislocation dynamics combined with voxel-based finite elements. Key Eng. Mat., 2011, 462-463: 395-400
|
[28] |
Santos-Güemes R, Esteban-Manzanares G, Papadimitriou I, et al. Discrete dislocation dynamics simulations of dislocation-θ' precipitate interaction in Al-Cu alloys. J. Mech. Phys. Solids, 2018, 118: 228-244
|
[29] |
Santos-Güemes R, Bellón B, Esteban-Manzanares G, et al. Multiscale modelling of precipitation hardening in Al-Cu alloys: Dislocation dynamics simulations and experimental validation. Acta Materialia, 2020, 188: 475-485
|
[30] |
Hull D, Bacon DJ. Introduction to Dislocations. 5th Ed. Oxford: Butterworth-Heinemann, 2011: 43-62
|
[31] |
Huang MS, Li ZH. Coupled DDD-FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature. Journal of the Mechanics and Physics of Solids, 2015, 85(DEC): 74-97
|
[32] |
Huang S, Huang MS, Li ZH. Effect of interfacial dislocation networks on the evolution of matrix dislocations in nickel-based superalloy. International Journal of Plasticity, 2018, 110: 1-18
|
[33] |
Lu SJ, Zhang B, Li XY, et al. Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model. Journal of the Mechanics and Physics of Solids, 2019, 126(MAY): 117-135
|
[34] |
Wei DA, Zaiser M, Feng ZQ, et al. Effects of twin boundary orientation on plasticity of bicrystalline copper micropillars: A discrete dislocation dynamics simulation study. Acta Materialia, 2019, 176: 289-296
|
[35] |
Zhang X, Lu SJ, Zhang B, et al. Dislocation-grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations. Acta Materialia, 2021, 202: 88-98
|
[36] |
崔一南, 柳占立, 胡剑桥 等. 位错动力学在极端环境力学中的发展及应用. 高压物理学报, 2020, 34(3): 1-18(Cui Yinan, Liu Zhanli, Hu Jianqiao, et al. Advances and application of dislocation dynamics in the mechanics of extreme environment. Chinese Jouenal of High Pressure Physics, 2020, 34(3): 1-18 (in Chinese))
|
[37] |
Arsenlis A, Cai W, Tang M, et al. Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sc Modelling And Simulation in Materials Science and Engineering, 2006, 15(6): 553-595
|
[38] |
熊健, 魏德安, 陆宋江 等. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟. 金属学报, 2019, 55(11): 1477-1486(Xiong Jian, Wei De'an, Lu Songjiang, et al. A three-dimensional discrete dislocation dynamics simulation on micropillar compression of single crystal copper with dislocation density gradient. Acta Metallurgica Sinica, 2019, 55(11): 1477-1486 (in Chinese))
|
[39] |
Kelly A, Nicholson RS. Strengthening methods in crystals. International Materials Reviews, 1971, 17(1): 147
|
[40] |
Nie JF. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Mater, 2003, 48(8): 1009-1015
|
[41] |
Shin CS, Fivel MC, Verdier M, et al. Dislocation dynamics simulations of fatigue of precipitation-hardened materials. Materials Science and Engineering, 2005, 400: 166-169
|
[42] |
Fan HD, Wang Q, El-Awady JA, et al. Strain rate dependency of dislocation plasticity. Nature Communications, 2021, 12(1): 1845
|
[43] |
郭祥如, 孙朝阳, 王春晖 等. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究. 金属学报, 2018, 54(9): 1322-1332(Guo Xiangru, Sun Chaoyang, Wang Chunhui, et al. Investigation of strain rate effect by three-dimensional discrete dislocation dynamics for fcc single crystal during compression process. Acta Metallurgica Sinica, 2018, 54(9): 1322-1332 (in Chinese))
|