EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒增强复合材料压缩行为的位错动力学模拟

丁一凡 魏德安 陆宋江 刘金铃 康国政 张旭

丁一凡, 魏德安, 陆宋江, 刘金铃, 康国政, 张旭. 颗粒增强复合材料压缩行为的位错动力学模拟[J]. 力学学报, 2021, 53(6): 1622-1633. doi: 10.6052/0459-1879-21-028
引用本文: 丁一凡, 魏德安, 陆宋江, 刘金铃, 康国政, 张旭. 颗粒增强复合材料压缩行为的位错动力学模拟[J]. 力学学报, 2021, 53(6): 1622-1633. doi: 10.6052/0459-1879-21-028
Ding Yifan, Wei Dean, Lu Songjiang, Liu Jinling, Kang Guozheng, Zhang Xu. DISCRETE DISLOCATION DYNAMICS SIMULATIONS FOR COMPRESSION OF PARTICLE REINFORCED COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1622-1633. doi: 10.6052/0459-1879-21-028
Citation: Ding Yifan, Wei Dean, Lu Songjiang, Liu Jinling, Kang Guozheng, Zhang Xu. DISCRETE DISLOCATION DYNAMICS SIMULATIONS FOR COMPRESSION OF PARTICLE REINFORCED COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1622-1633. doi: 10.6052/0459-1879-21-028

颗粒增强复合材料压缩行为的位错动力学模拟

doi: 10.6052/0459-1879-21-028
基金项目: 1)国家自然科学基金资助项目(11672251);国家自然科学基金资助项目(11872321)
详细信息
    作者简介:

    2)张旭, 教授, 主要研究方向: 高强高韧材料的多尺度力学. E-mail: xzhang@swjtu.edu.cn

    通讯作者:

    张旭

  • 中图分类号: O341

DISCRETE DISLOCATION DYNAMICS SIMULATIONS FOR COMPRESSION OF PARTICLE REINFORCED COMPOSITES

  • 摘要: 颗粒增强铜基复合材料因具有极高的强度和弹性模量, 优异的导电、导热性能和抗磨损能力, 被广泛应用于航天航空、汽车、电子工业等领域. 第二相强化是其主要的强化方式, 其通过合金中弥散的微粒阻碍位错运动, 可有效提高金属材料的力学性能, 提高其服役安全. 针对该问题本文采用三维离散位错动力学(three-dimensional discrete dislocation dynamics, 3D-DDD)方法, 对微尺度颗粒增强铜基复合材料进行了微柱压缩模拟, 分析了位错与第二相颗粒交互作用对材料力学响应的影响, 揭示第二相颗粒强化的微观机理. 本研究将第二相颗粒视为位错不可穿透的球形微粒, 采用位错绕过机制模拟颗粒与位错的交互作用过程. 通过调控滑移面相对于第二相颗粒中心的距离发现: 屈服应力和应变硬化率均随距离的增大而减小. 研究也发现Schmid因子越高的滑移系, 屈服应力越低, 后续应变硬化率越低. 多位错与颗粒交互作用的模拟发现, 同一滑移面中位错间的反应和不同滑移系中位错的交互作用可能是导致屈服应力和应变硬化率降低的关键.

     

  • [1] Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 2009, 324(5925): 349-352
    [2] 吕昭平, 蒋虽合, 何骏阳 等. 先进金属材料的第二相强化. 金属学报, 2016, 52(10): 1183-1198

    (Lü Zhaoping, Jiang Suihe, He Junyang, et al. Second phase strengthening in advanced metal materials. Acta Metallurgica Sinica, 2016, 52(10): 1183-1198 (in Chinese))
    [3] Gao X, Yue HY, Guo EJ, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technology, 2016, 301: 601-607
    [4] Qu XH, Zhang L, Wu M, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications. Progress in Natural Science, 2011, 21(3): 189-197
    [5] Li ZD, Lin CG, Cui S. Development of research and application of copper alloys with high strength and high conductivity. Advanced Materials Research, 2014, 1053: 61-68
    [6] Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science & Engineering R-Reports, 2013, 74(10): 281-350
    [7] Li M Q, Zhai H X, Huang Z Y, et al. Microstructure and mechanical properties of TiC0.5 reinforced copper matrix composites. Materials Science and Engineering, 2013, 588(dec. 20): 335-339
    [8] Li MQ, Zhai HX, Huang ZY, et al. Tensile behavior and strengthening mechanism in ultrafine TiC0.5 particle reinforced Cu-Al matrix composites. Journal of Alloys and Compounds, 2015, 628: 186-194
    [9] Schubert T, Ciupiński ?, Zieliński W, et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scripta Mater, 2008, 58(4): 263-266
    [10] Ren SB, Shen XY, Guo CY, et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy. Composites Science and Technology, 2011, 71(13): 1550-1555
    [11] Celebi Efe G, Zeytin S, Bindal C. The effect of SiC particle size on the properties of Cu-SiC composites. Materials and Design, 2012, 36(Apr. ): 633-639
    [12] Prosviryakov AS. SiC content effect on the properties of Cu-SiC composites produced by mechanical alloying. Journal of Alloys and Compounds, 2015, 632: 707-710
    [13] Kiani MT, Murayama M, Gu XW. Deformation of a nanocube with a single incoherent precipitate: Role of precipitate size and dislocation looping. Philosophical Magazine, 2020, 100(13): 1749-1770
    [14] Kiani MT, Wang Y, Bertin N, et al. Strengthening mechanism of a single precipitate in a metallic nanocube. Nano Letter, 2019, 19(1): 255-260
    [15] Huang MS, Zhao LG, Tong J. Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys. International Journal of Plasticity, 2012, 28(1): 141-158
    [16] Cui YN. The Investigation of Plastic Behavior by Discrete Dislocation Dynamics for Single Crystal Pillar at Submicron Scale. Singapore: Springer, 2017: 11-12
    [17] 黄敏生, 黄嵩, 梁爽 等. 离散位错动力学算法及其在材料塑性行为模拟中的应用. 科学通报, 2019, 64(18): 1864-1877

    (Huang Minsheng, Huang Song, Liang Shuang, et al. Discrete dislocation dynamics algorithms and their application in modeling of plastic behaviors of crystalline materials. Chinese Science Bulletin, 2019, 64(18): 1864-1877 (in Chinese))
    [18] Fan HD, Ngan AHW, Gan K, et al. Origin of double-peak precipitation hardening in metallic alloys. International Journal of Plasticity, 2018, 111: 152-167
    [19] Xiang Y, Srolovitz DJ, Cheng LT, et al. Level set simulations of dislocation-particle bypass mechanisms. Acta Materialia, 2004, 52(7): 1745-1760
    [20] Xiang Y, Srolovitz DJ. Dislocation climb effects on particle bypass mechanisms. Philosophical Magazine, 2006, 86(25-26): 3937-3957
    [21] Queyreau S, Monnet G, Devincre B. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Materialia, 2010, 58(17): 5586-5595
    [22] Záleák T, Svoboda J, Dlouhy A. High temperature dislocation processes in precipitation hardened crystals investigated by a 3D discrete dislocation dynamics. International Journal of Plasticity, 2017, 97: 1-23
    [23] Monnet G. Investigation of precipitation hardening by dislocation dynamics simulations. Philosophical Magazine, 2006, 86(36): 5927-5941
    [24] Monnet G, Naamane S, Devincre B. Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations. Acta Materialia, 2011, 59(2): 451-461
    [25] Shin CS, Fivel MC, Verdier M, et al. Dislocation-impenetrable precipitate interaction: A three-dimensional discrete dislocation dynamics analysis. Philosophical Magazine, 2003, 83(31-34): 3691-3704
    [26] Takahashi A, Ghoniem NM. A computational method for dislocation-precipitate interaction. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1534-1553
    [27] Takahashi A, Terada Y. Numerical simulation of dislocation-precipitate interactions using dislocation dynamics combined with voxel-based finite elements. Key Eng. Mat., 2011, 462-463: 395-400
    [28] Santos-Güemes R, Esteban-Manzanares G, Papadimitriou I, et al. Discrete dislocation dynamics simulations of dislocation-θ' precipitate interaction in Al-Cu alloys. J. Mech. Phys. Solids, 2018, 118: 228-244
    [29] Santos-Güemes R, Bellón B, Esteban-Manzanares G, et al. Multiscale modelling of precipitation hardening in Al-Cu alloys: Dislocation dynamics simulations and experimental validation. Acta Materialia, 2020, 188: 475-485
    [30] Hull D, Bacon DJ. Introduction to Dislocations. 5th Ed. Oxford: Butterworth-Heinemann, 2011: 43-62
    [31] Huang MS, Li ZH. Coupled DDD-FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature. Journal of the Mechanics and Physics of Solids, 2015, 85(DEC): 74-97
    [32] Huang S, Huang MS, Li ZH. Effect of interfacial dislocation networks on the evolution of matrix dislocations in nickel-based superalloy. International Journal of Plasticity, 2018, 110: 1-18
    [33] Lu SJ, Zhang B, Li XY, et al. Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model. Journal of the Mechanics and Physics of Solids, 2019, 126(MAY): 117-135
    [34] Wei DA, Zaiser M, Feng ZQ, et al. Effects of twin boundary orientation on plasticity of bicrystalline copper micropillars: A discrete dislocation dynamics simulation study. Acta Materialia, 2019, 176: 289-296
    [35] Zhang X, Lu SJ, Zhang B, et al. Dislocation-grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations. Acta Materialia, 2021, 202: 88-98
    [36] 崔一南, 柳占立, 胡剑桥 等. 位错动力学在极端环境力学中的发展及应用. 高压物理学报, 2020, 34(3): 1-18

    (Cui Yinan, Liu Zhanli, Hu Jianqiao, et al. Advances and application of dislocation dynamics in the mechanics of extreme environment. Chinese Jouenal of High Pressure Physics, 2020, 34(3): 1-18 (in Chinese))
    [37] Arsenlis A, Cai W, Tang M, et al. Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sc Modelling And Simulation in Materials Science and Engineering, 2006, 15(6): 553-595
    [38] 熊健, 魏德安, 陆宋江 等. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟. 金属学报, 2019, 55(11): 1477-1486

    (Xiong Jian, Wei De'an, Lu Songjiang, et al. A three-dimensional discrete dislocation dynamics simulation on micropillar compression of single crystal copper with dislocation density gradient. Acta Metallurgica Sinica, 2019, 55(11): 1477-1486 (in Chinese))
    [39] Kelly A, Nicholson RS. Strengthening methods in crystals. International Materials Reviews, 1971, 17(1): 147
    [40] Nie JF. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Mater, 2003, 48(8): 1009-1015
    [41] Shin CS, Fivel MC, Verdier M, et al. Dislocation dynamics simulations of fatigue of precipitation-hardened materials. Materials Science and Engineering, 2005, 400: 166-169
    [42] Fan HD, Wang Q, El-Awady JA, et al. Strain rate dependency of dislocation plasticity. Nature Communications, 2021, 12(1): 1845
    [43] 郭祥如, 孙朝阳, 王春晖 等. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究. 金属学报, 2018, 54(9): 1322-1332

    (Guo Xiangru, Sun Chaoyang, Wang Chunhui, et al. Investigation of strain rate effect by three-dimensional discrete dislocation dynamics for fcc single crystal during compression process. Acta Metallurgica Sinica, 2018, 54(9): 1322-1332 (in Chinese))
  • 加载中
计量
  • 文章访问数:  851
  • HTML全文浏览量:  161
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-17
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回