EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LBM的铝微滴斜柱沉积水平偏移研究

任彦霖 刘赵淼 逄燕 王翔

任彦霖, 刘赵淼, 逄燕, 王翔. 基于LBM的铝微滴斜柱沉积水平偏移研究[J]. 力学学报, 2021, 53(6): 1599-1608. doi: 10.6052/0459-1879-21-022
引用本文: 任彦霖, 刘赵淼, 逄燕, 王翔. 基于LBM的铝微滴斜柱沉积水平偏移研究[J]. 力学学报, 2021, 53(6): 1599-1608. doi: 10.6052/0459-1879-21-022
Ren Yanlin, Liu Zhaomiao, Pang Yan, Wang Xiang. A LATTICE-BOLTZMANN METHOD SIMULATION OF THE HORIZONTAL OFFSET IN OBLIQUE COLUMN DEPOSITION OF ALUMINUM DROPLETS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1599-1608. doi: 10.6052/0459-1879-21-022
Citation: Ren Yanlin, Liu Zhaomiao, Pang Yan, Wang Xiang. A LATTICE-BOLTZMANN METHOD SIMULATION OF THE HORIZONTAL OFFSET IN OBLIQUE COLUMN DEPOSITION OF ALUMINUM DROPLETS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1599-1608. doi: 10.6052/0459-1879-21-022

基于LBM的铝微滴斜柱沉积水平偏移研究

doi: 10.6052/0459-1879-21-022
基金项目: 1)装备预研领域基金资助项目(61409230309)
详细信息
    作者简介:

    2)刘赵淼, 教授, 主要研究方向: 微流控技术. E-mail: lzm@bjut.edu.cn

    通讯作者:

    刘赵淼

  • 中图分类号: O35

A LATTICE-BOLTZMANN METHOD SIMULATION OF THE HORIZONTAL OFFSET IN OBLIQUE COLUMN DEPOSITION OF ALUMINUM DROPLETS

  • 摘要: 金属微滴沉积制造技术采用逐点堆砌方式成型, 为斜柱沉积提供无支撑制造方式, 具有高度灵活性. 本文针对铝液滴斜柱连续沉积过程, 建立格子玻尔兹曼模型进行数值模拟, 研究液滴在凝固表面上的水平偏移运动. 根据表面能充放过程, 沉积运动被划分为下落、快速扩张、慢速扩张、回弹4个阶段, 其受力状态由表面能、重力势能、动能和黏性耗散趋势得到. 液滴内部流动在扩张阶段中表现为滑动状态, 而在回弹阶段中表现为滚动状态. 液滴偏移运动的加速阶段主要发生在扩张阶段, 而偏移距离则在回弹阶段中产生. 扩张阶段的受力状态表明偏移运动的主要推动力为重力和毛细力. 随着液滴轴线距离的增大, 扩张阶段中的加速段时间缩短、速度峰值提高, 使水平偏移距离呈先增大后减小的趋势, 这种阶段化特征源于加速段时长和速度极大值的竞争关系. 不同沉积高度和固液浸润度下, 偏移距离均保持相同的演化趋势. 在相同的轴线距离下, 偏移距离随固液浸润度的增大而减小, 随沉积高度的增大而减小. 通过拟合水平偏移距离演化规律、优化扫描步距, 能够实现斜柱的均匀沉积, 并使倾角与理论结果一致.

     

  • 1 王强, 郑雄飞, 王赫然 等. 基于多喷头生物3D打印系统的管腔型结构构建. 机械设计与制造, 2019, 11: 265-268
    1 (Wang Qiang, Zheng Xiongfei, Wang Heran, et al. Fabrication of lumen structure based on multi-nozzle biological 3D printing system. Machinery Design & Manufacture, 2019, 11: 265-268 (in Chinese))
    2 方健文, 朱佩文, 邵毅. 3D 打印在眼科血管性疾病的应用进展. 国际眼科杂志, 2019, 19(9): 1499-1502
    2 (Fang Jianwen, Zhu Peiwen, Shao Yi. Application progress of 3D printing technology in ophthalmic vascular disease. International Eye Science, 2019, 19(9): 1499-1502 (in Chinese))
    3 芮敏, 郑欣, 张云庆 等. 3D打印多孔钛合金支架修复兔桡骨骨缺损. 中国组织工程研究, 2019, 23(18): 2789-2793
    3 (Rui Min, Zheng Xin, Zhang Yunqing, et al. Three-dimensional printing porous titanium alloy scaffold repairs radial bone defect in rabbits. Chinese Journal of Tissue Engineering Research, 2019, 23(18): 2789-2793 (in Chinese))
    4 刘建恒, 李明, 刘鐘阳 等. 3D 打印多孔矿化胶原硫酸钙仿生组织工程骨修复兔股骨髁包容性骨缺损的实验研究. 创伤外科杂志, 2020, 22(6): 408-413
    4 (Liu Jianheng, Li Ming, Liu Zhongyang, et al. Experimental study on a new tissue engineering bone in repairing rabbit bone defect. Journal of Trauma Surgery, 2020, 22(6): 408-413 (in Chinese))
    5 刘赵淼, 徐元迪, 逄燕. 压电式微滴按需喷射的过程控制和规律. 力学学报, 2019, 51(4): 1031-1042
    5 (Liu Zhaomiao, Xu Yuandi, Pang Yan, et al. Study of process control on piezoelectric drop-on-demand ejection. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1031-1042 (in Chinese))
    6 刘赵淼, 钟希祥, 杨刚 等. 气动式微滴喷射中液滴稳定生成的动力学特性研究. 机械工程学报, 2020, 56(23): 203-211
    6 (Liu Zhaomiao, Zhong Xixiang, Yang Gang, et al. Study on the kinetic characteristics of droplet formation in pneumatic microdroplet injection. Journal of Mechanical Engineering, 2020, 56(23): 203-211 (in Chinese))
    7 Zhang DC, Qi LH, Luo J, et al. Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. International Journal of Machine Tools and Manufacture, 2017, 116: 18-24
    8 Fang M, Chandra S, Park CB. Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyping Journal, 2008, 14(1): 44-52
    9 Lee TK, Kang TG, Yang JS, et al. Drop-on-demand solder droplet jetting system for fabricating microstructure. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(3): 202-210
    10 李素丽, 杨来侠, 卢秉恒. 基于金属液滴水平重叠沉积工艺对表面形貌和内部质量优化研究. 稀有金属材料与工程, 2019, 8: 2460-2467
    10 (Li Suli, Yang Laixia, Lu Bingheng. Process optimization of surface morphology and internal quality based on metal droplets horizontal lapped deposition. Rare Metal Materials and Engineering, 2019, 8: 2460-2467 (in Chinese))
    11 李素丽, 杨来侠, 卢秉恒. 金属液滴垂直搭接成形工艺. 稀有金属材料与工程, 2019, 48(9): 2773-3776
    11 (Li Suli, Yang Laixia, Lu Bingheng. Vertically lapped deposition process of metal droplet. Rare Metal Materials and Engineering, 2019, 48(9): 2773-3776 (in Chinese))
    12 Wang CH, Tsai HL, Wu YC, et al. Investigation of molten metal droplet deposition and solidification for 3D printing techniques. Journal of Micromechanics & Microengineering, 2016, 26(9): 095012
    13 Du J, Wei ZY. Numerical analysis of pileup process in metal microdroplet deposition manufacture. International Journal of Thermal Sciences, 2015, 96: 35-44
    14 Fang M, Chandra S, Park CB. Experiments on remelting and solidification of molten metal droplets deposited in vertical columns. Journal of Manufacturing & Engineering, 2007, 129(2): 461-466
    15 Zhang DC, Qi LH, Luo J, et al. Parametric mapping of linear deposition morphology in uniform metal droplet deposition technique. Journal of Materials Processing Technology, 2019, 264: 234-239
    16 Graham PJ, Farhangi MM, Dolatabadi A. Dynamics of droplet coalescence in response to increasing hydrophobicity. Physics of Fluids, 2012, 24(11): 175-181
    17 Dalili A, Chandra S, Mostaghimi J, et al. Formation of liquid sheets by deposition of droplets on a surface. Journal of Colloid & Interface Science, 2014, 418: 292-299
    18 Li R, Ashgriz N, Chandra S, et al. Drawback during deposition of overlapping molten wax droplets. Journal of Manufacturing Science and Engineering, 2008, 130(4): 1188-1188
    19 Ju JJ, Jin ZY, Zhang HH, et al. The impact and freezing processes of a water droplet on different cold spherical surfaces. Experimental Thermal and Fluid Science, 2018, 96: 430-440
    20 Tian DW, Tian YH, Wang CQ, et al. Modeling of an oblique impact of solder droplet onto a groove with the impact point to be offset from the groove surfaces interface. Journal of Materials Science, 2009, 44: 1772-1779
    21 Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815-1820
    22 He X, Doolen GD. Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. Journal of Statistical Physics, 2002, 107(1-2): 309-328
    23 Shan XW, Doolen G. Multicomponent Lattice- Boltzmann model with interparticle interaction. Journal of Statistical Physics, 1995, 81(1-2): 379-393
    24 Huber C, Parmigiani A, Chopard B, et al. Lattice Boltzmann model for melting with natural convection. International Journal of Heat and Fluid Flow, 2008, 29(5): 1469-1480
    25 Noble DR, Torczynski JR. A lattice-Boltzmann method for partially saturated computational cells. International Journal of Modern Physics C, 1998, 9(8): 1189-1201
    26 Cook RK, Noble DR, Williams JR. A direct simulation method for particle-fluid systems. Engineering Computation, 2004, 21(2-4): 151-168
    27 张艳勇, 陈宝明, 李佳阳. 基于LBM 研究骨架对相变材料融化蓄热的影响. 山东建筑大学学报, 2020, 35(2): 53-75
    27 (Zhang Yanyong, Chen Baoming, Li Jiayang. Study on the influence of skeleton on the melting and heat storage of phase change materials based on LBM. Journal of Shandong Jianzhu University, 2020, 35(2): 53-75 (in Chinese))
    28 高一倩, 柳毅, 李凌. 基于LBM的三角腔固液相变模拟. 储能科学与技术, 2020, 9(6): 1798-1805
    28 (Gao Yiqian, Liu Yi, Li Ling. Numerical simulation of natural convection melting inside a triangular cavity using lattice Boltzmann method. Energy Storage Science and Technology, 2020, 9(6): 1798-1805 (in Chinese))
    29 周俊杰, 冯妍弁, 蔡峻杰 等. 等离子弧焊接熔池相变过程的LBM模拟与验证. 工程热物理学报, 2019, 40(2): 442-449
    29 (Zhou Junjie, Feng Yanhui, Cai Junjie, et al. Lattice Boltzmann simulation of phase transition process in a weld pool in plasma arc welding. Journal of Engineering Thermophysics, 2019, 40(2): 442-449 (in Chinese))
    30 Lu CL, Wang HN, Wang SY, et al. Effect of heating modes on melting performance of a solid-liquid phase change using lattice Boltzmann model. International Communications in Heat and Mass Transfer, 2019, 108: 104330
    31 Kasibhatla RR, Brüggemann D. Smoothed iterative enthalpy approach for solid-liquid phase change. International Journal of Thermal Sciences, 2020, 152: 106187
    32 Zhao J, Li X, Cheng P. Lattice Boltzmann simulation of a droplet impact and freezing on cold surfaces. International Communications in Heat and Mass Transfer, 2017, 87: 175-182
    33 Sun JJ, Gong JY, Li GJ. A lattice Boltzmann model for solidification of water droplet on cold flat plate. International Journal of Refrigeration, 2015, 59: 53-64
    34 Huang RZ, Wu HY. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change. Journal of Computational Physics, 2015, 294: 346-362
    35 霍元平, 王军锋, 左子文 等. 滴状模式下液桥形成及断裂的电流体动力学特性研究. 力学学报, 2019, 51(2): 425-431
    35 (Huo Yuanping, Wang Junfeng, Zuo Ziwen, et al. Electrohydrodynamic characteristics of liquid bridge formation at the dripping mode of electrosprays. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 425-431 (in Chinese))
    36 李桥忠, 陈木凤, 李游 等. 浸没边界-简化热格子Boltzmann方法研究及其应用. 力学学报, 2019, 51(2): 392-404
    36 (Li Qiaozhong, Chen Mufeng, Li You, et al. Immersed boundary-simplified thermal lattice Boltzmann method for fluid-structure interaction problem with heat transfer and its application. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 392-404 (in Chinese))
    37 尚超, 阳倦成, 张杰 等. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究. 力学学报, 2019, 51(2): 380-391
    37 (Shang Chao, Yang Juancheng, Zhang Jie, et al. Experimental study on the dynamic characteristics of Galinstan droplet impacting on the metal foam surface. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391 (in Chinese))
  • 加载中
计量
  • 文章访问数:  156
  • HTML全文浏览量:  9
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 录用日期:  2021-06-18

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!