[1] |
王强, 郑雄飞, 王赫然 等. 基于多喷头生物3D打印系统的管腔型结构构建. 机械设计与制造, 2019, 11: 265-268(Wang Qiang, Zheng Xiongfei, Wang Heran, et al. Fabrication of lumen structure based on multi-nozzle biological 3D printing system. Machinery Design & Manufacture, 2019, 11: 265-268 (in Chinese))
|
[2] |
方健文, 朱佩文, 邵毅. 3D 打印在眼科血管性疾病的应用进展. 国际眼科杂志, 2019, 19(9): 1499-1502(Fang Jianwen, Zhu Peiwen, Shao Yi. Application progress of 3D printing technology in ophthalmic vascular disease. International Eye Science, 2019, 19(9): 1499-1502 (in Chinese))
|
[3] |
芮敏, 郑欣, 张云庆 等. 3D打印多孔钛合金支架修复兔桡骨骨缺损. 中国组织工程研究, 2019, 23(18): 2789-2793(Rui Min, Zheng Xin, Zhang Yunqing, et al. Three-dimensional printing porous titanium alloy scaffold repairs radial bone defect in rabbits. Chinese Journal of Tissue Engineering Research, 2019, 23(18): 2789-2793 (in Chinese))
|
[4] |
刘建恒, 李明, 刘鐘阳 等. 3D 打印多孔矿化胶原硫酸钙仿生组织工程骨修复兔股骨髁包容性骨缺损的实验研究. 创伤外科杂志, 2020, 22(6): 408-413(Liu Jianheng, Li Ming, Liu Zhongyang, et al. Experimental study on a new tissue engineering bone in repairing rabbit bone defect. Journal of Trauma Surgery, 2020, 22(6): 408-413 (in Chinese))
|
[5] |
刘赵淼, 徐元迪, 逄燕. 压电式微滴按需喷射的过程控制和规律. 力学学报, 2019, 51(4): 1031-1042(Liu Zhaomiao, Xu Yuandi, Pang Yan, et al. Study of process control on piezoelectric drop-on-demand ejection. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1031-1042 (in Chinese))
|
[6] |
刘赵淼, 钟希祥, 杨刚 等. 气动式微滴喷射中液滴稳定生成的动力学特性研究. 机械工程学报, 2020, 56(23): 203-211(Liu Zhaomiao, Zhong Xixiang, Yang Gang, et al. Study on the kinetic characteristics of droplet formation in pneumatic microdroplet injection. Journal of Mechanical Engineering, 2020, 56(23): 203-211 (in Chinese))
|
[7] |
Zhang DC, Qi LH, Luo J, et al. Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. International Journal of Machine Tools and Manufacture, 2017, 116: 18-24
|
[8] |
Fang M, Chandra S, Park CB. Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyping Journal, 2008, 14(1): 44-52
|
[9] |
Lee TK, Kang TG, Yang JS, et al. Drop-on-demand solder droplet jetting system for fabricating microstructure. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(3): 202-210
|
[10] |
李素丽, 杨来侠, 卢秉恒. 基于金属液滴水平重叠沉积工艺对表面形貌和内部质量优化研究. 稀有金属材料与工程, 2019, 8: 2460-2467(Li Suli, Yang Laixia, Lu Bingheng. Process optimization of surface morphology and internal quality based on metal droplets horizontal lapped deposition. Rare Metal Materials and Engineering, 2019, 8: 2460-2467 (in Chinese))
|
[11] |
李素丽, 杨来侠, 卢秉恒. 金属液滴垂直搭接成形工艺. 稀有金属材料与工程, 2019, 48(9): 2773-3776(Li Suli, Yang Laixia, Lu Bingheng. Vertically lapped deposition process of metal droplet. Rare Metal Materials and Engineering, 2019, 48(9): 2773-3776 (in Chinese))
|
[12] |
Wang CH, Tsai HL, Wu YC, et al. Investigation of molten metal droplet deposition and solidification for 3D printing techniques. Journal of Micromechanics & Microengineering, 2016, 26(9): 095012
|
[13] |
Du J, Wei ZY. Numerical analysis of pileup process in metal microdroplet deposition manufacture. International Journal of Thermal Sciences, 2015, 96: 35-44
|
[14] |
Fang M, Chandra S, Park CB. Experiments on remelting and solidification of molten metal droplets deposited in vertical columns. Journal of Manufacturing & Engineering, 2007, 129(2): 461-466
|
[15] |
Zhang DC, Qi LH, Luo J, et al. Parametric mapping of linear deposition morphology in uniform metal droplet deposition technique. Journal of Materials Processing Technology, 2019, 264: 234-239
|
[16] |
Graham PJ, Farhangi MM, Dolatabadi A. Dynamics of droplet coalescence in response to increasing hydrophobicity. Physics of Fluids, 2012, 24(11): 175-181
|
[17] |
Dalili A, Chandra S, Mostaghimi J, et al. Formation of liquid sheets by deposition of droplets on a surface. Journal of Colloid & Interface Science, 2014, 418: 292-299
|
[18] |
Li R, Ashgriz N, Chandra S, et al. Drawback during deposition of overlapping molten wax droplets. Journal of Manufacturing Science and Engineering, 2008, 130(4): 1188-1188
|
[19] |
Ju JJ, Jin ZY, Zhang HH, et al. The impact and freezing processes of a water droplet on different cold spherical surfaces. Experimental Thermal and Fluid Science, 2018, 96: 430-440
|
[20] |
Tian DW, Tian YH, Wang CQ, et al. Modeling of an oblique impact of solder droplet onto a groove with the impact point to be offset from the groove surfaces interface. Journal of Materials Science, 2009, 44: 1772-1779
|
[21] |
Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815-1820
|
[22] |
He X, Doolen GD. Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. Journal of Statistical Physics, 2002, 107(1-2): 309-328
|
[23] |
Shan XW, Doolen G. Multicomponent Lattice- Boltzmann model with interparticle interaction. Journal of Statistical Physics, 1995, 81(1-2): 379-393
|
[24] |
Huber C, Parmigiani A, Chopard B, et al. Lattice Boltzmann model for melting with natural convection. International Journal of Heat and Fluid Flow, 2008, 29(5): 1469-1480
|
[25] |
Noble DR, Torczynski JR. A lattice-Boltzmann method for partially saturated computational cells. International Journal of Modern Physics C, 1998, 9(8): 1189-1201
|
[26] |
Cook RK, Noble DR, Williams JR. A direct simulation method for particle-fluid systems. Engineering Computation, 2004, 21(2-4): 151-168
|
[27] |
张艳勇, 陈宝明, 李佳阳. 基于LBM 研究骨架对相变材料融化蓄热的影响. 山东建筑大学学报, 2020, 35(2): 53-75(Zhang Yanyong, Chen Baoming, Li Jiayang. Study on the influence of skeleton on the melting and heat storage of phase change materials based on LBM. Journal of Shandong Jianzhu University, 2020, 35(2): 53-75 (in Chinese))
|
[28] |
高一倩, 柳毅, 李凌. 基于LBM的三角腔固液相变模拟. 储能科学与技术, 2020, 9(6): 1798-1805(Gao Yiqian, Liu Yi, Li Ling. Numerical simulation of natural convection melting inside a triangular cavity using lattice Boltzmann method. Energy Storage Science and Technology, 2020, 9(6): 1798-1805 (in Chinese))
|
[29] |
周俊杰, 冯妍弁, 蔡峻杰 等. 等离子弧焊接熔池相变过程的LBM模拟与验证. 工程热物理学报, 2019, 40(2): 442-449(Zhou Junjie, Feng Yanhui, Cai Junjie, et al. Lattice Boltzmann simulation of phase transition process in a weld pool in plasma arc welding. Journal of Engineering Thermophysics, 2019, 40(2): 442-449 (in Chinese))
|
[30] |
Lu CL, Wang HN, Wang SY, et al. Effect of heating modes on melting performance of a solid-liquid phase change using lattice Boltzmann model. International Communications in Heat and Mass Transfer, 2019, 108: 104330
|
[31] |
Kasibhatla RR, Brüggemann D. Smoothed iterative enthalpy approach for solid-liquid phase change. International Journal of Thermal Sciences, 2020, 152: 106187
|
[32] |
Zhao J, Li X, Cheng P. Lattice Boltzmann simulation of a droplet impact and freezing on cold surfaces. International Communications in Heat and Mass Transfer, 2017, 87: 175-182
|
[33] |
Sun JJ, Gong JY, Li GJ. A lattice Boltzmann model for solidification of water droplet on cold flat plate. International Journal of Refrigeration, 2015, 59: 53-64
|
[34] |
Huang RZ, Wu HY. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change. Journal of Computational Physics, 2015, 294: 346-362
|
[35] |
霍元平, 王军锋, 左子文 等. 滴状模式下液桥形成及断裂的电流体动力学特性研究. 力学学报, 2019, 51(2): 425-431(Huo Yuanping, Wang Junfeng, Zuo Ziwen, et al. Electrohydrodynamic characteristics of liquid bridge formation at the dripping mode of electrosprays. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 425-431 (in Chinese))
|
[36] |
李桥忠, 陈木凤, 李游 等. 浸没边界-简化热格子Boltzmann方法研究及其应用. 力学学报, 2019, 51(2): 392-404(Li Qiaozhong, Chen Mufeng, Li You, et al. Immersed boundary-simplified thermal lattice Boltzmann method for fluid-structure interaction problem with heat transfer and its application. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 392-404 (in Chinese))
|
[37] |
尚超, 阳倦成, 张杰 等. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究. 力学学报, 2019, 51(2): 380-391(Shang Chao, Yang Juancheng, Zhang Jie, et al. Experimental study on the dynamic characteristics of Galinstan droplet impacting on the metal foam surface. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391 (in Chinese))
|