EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测

吴建营 陈万昕 黄羽立

吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测[J]. 力学学报, 2021, 53(5): 1367-1382. doi: 10.6052/0459-1879-21-020
引用本文: 吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测[J]. 力学学报, 2021, 53(5): 1367-1382. doi: 10.6052/0459-1879-21-020
Wu Jianying, Chen Wanxin, Huang Yuli. COMPUTATIONAL MODELING OF SHRINKAGE INDUCED CRACKING IN EARLY-AGE CONCRETE BASED ON THE UNIFIED PHASE-FIELD THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1367-1382. doi: 10.6052/0459-1879-21-020
Citation: Wu Jianying, Chen Wanxin, Huang Yuli. COMPUTATIONAL MODELING OF SHRINKAGE INDUCED CRACKING IN EARLY-AGE CONCRETE BASED ON THE UNIFIED PHASE-FIELD THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1367-1382. doi: 10.6052/0459-1879-21-020

基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测

doi: 10.6052/0459-1879-21-020
基金项目: 1)国家自然科学基金(51878294);国家自然科学基金(51678246);土木工程防灾国家重点实验室开放课题(SLDRCE20-01)
详细信息
    作者简介:

    2)吴建营, 教授, 主要研究方向: 固体和结构损伤破坏力学. E-mail: jywu@scut.edu.cn

    通讯作者:

    吴建营

  • 中图分类号: O346.1,O346.5,TU311.4

COMPUTATIONAL MODELING OF SHRINKAGE INDUCED CRACKING IN EARLY-AGE CONCRETE BASED ON THE UNIFIED PHASE-FIELD THEORY

  • 摘要: 受水化反应和热量传输等过程影响, 混凝土在养护阶段会发生受约束收缩变形, 并由此在结构内引发较大的拉应力, 而此时混凝土力学性能往往还处于较低水平, 容易导致建造期混凝土结构即出现裂缝等病害. 这种早龄期混凝土裂缝对核安全壳、桥梁隧道、地下结构、水工或海工结构等重大土木工程和基础设施的全生命周期完整性、耐久性和安全性造成严重影响. 为了准确预测早龄期混凝土抗裂性能并量化裂缝演化对混凝土结构行为的不利影响, 亟需开展化-热-力多场耦合环境下的混凝土裂缝建模与抗裂性能分析研究. 针对这一需求, 本工作在前期提出的固体结构损伤破坏统一相场理论基础上, 考虑开裂过程与水化反应、热量传输等之间的相互影响, 建立裂缝相场演化特征(包括基于强度的裂缝起裂准则、基于能量的裂缝扩展准则和基于变分原理的扩展方向判据等)与混凝土水化度和温度之间的定量联系, 提出混凝土化-热-力多场耦合相场内聚裂缝模型, 发展相应的多场有限元数值实现算法并应用于若干验证算例. 数值模拟结果表明, 上述多场耦合相场内聚裂缝模型合理地考虑了水化反应、热量传输、力学行为以及裂缝演化之间的耦合效应, 揭示了早龄期混凝土热膨胀变形和自收缩变形的相互竞争机理, 且分析结果不受裂缝尺度和网格大小等数值参数的影响, 实现了早龄期裂缝演化全过程准确模拟和抗裂性能定量预测, 有望在混凝土结构早龄期裂缝预测和控制方面发挥重要作用.

     

  • [1] Ba?ant ZP, Jirásek M. Creep and Hygrothermal Effects in Concrete Structures. Dordrecht: Springer, 2018
    [2] Ulm FJ, Coussy O. Modeling of thermochemomechanical couplings of concrete at early ages. Journal of Engineering Mechanics, 1995,121(7):785-794
    [3] Ulm FJ, Coussy O. Strength growth as chemo-plastic hardening in early age concrete. Journal of Engineering Mechanics, 1996,122(12):1123-1132
    [4] De Schutter G. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Computers & Structures, 2002,80(27-30):2035-2042
    [5] Lackner R, Mang HA. Chemoplastic material model for the simulation of early-age cracking: From the constitutive law to numerical analyses of massive concrete structures. Cement and Concrete Composites, 2004,26(5):551-562
    [6] De Borst R, Van Den Boogaard A. Finite-element modeling of deformation and cracking in early-age concrete. Journal of Engineering Mechanics, 1994,120(12):2519-2534
    [7] Song HW, Cho HJ, Park SS, et al. Early-age cracking resistance evaluation of concrete structures. Concrete Science and Engineering, 2001,3(10):62-72
    [8] Ba?ant ZP, Kim JK, Jeon SE. Cohesive fracturing and stresses caused by hydration heat in massive concrete wall. Journal of Engineering Mechanics, 2003,129(1):21-30
    [9] Cervera M, Oliver J, Prato T. Thermo-chemo-mechanical model for concrete. I: Hydration and aging. Journal of Engineering Mechanics, 1999,125(9):1018-1027
    [10] Gawin D, Pesavento F, Schrefler BA. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena; Part II: Shrinkage and creep of concrete. International Journal for Numerical Methods in Engineering, 2006,67(3):332-363
    [11] Faria R, Azenha M, Figueiras JA. Modelling of concrete at early ages: Application to an externally restrained slab. Cement and Concrete Composites, 2006,28(6):572-585
    [12] 金贤玉, 田野, 金南国. 混凝土早龄期性能与裂缝控制. 建筑结构学报, 2010,31(6):204-212

    (Jin Xianyu, Tian Ye, Jin Nanguo. Early age properties and cracking control of concrete. Journal of Building Structures, 2010,31(6):204-212 (in Chinese))
    [13] Briffaut M, Benboudjema F, Torrenti JM, et al. Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering Structures, 2011,33(4):1390-1401
    [14] Wang Q, Ren X, Ballarini R. A multifield model for early-age massive concrete structures: Hydration, damage, and creep. Journal of Engineering Mechanics, 2020,146(10):04020115
    [15] Yuan Y, Wan ZL. Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cement and Concrete Research, 2002,32(7):1053-1059
    [16] Grassl P, Wong HS, Buenfeld NR. Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar. Cement and Concrete Research, 2010,40(1):85-93
    [17] Idiart AE, López CM, Carol I. Modeling of drying shrinkage of concrete specimens at the meso-level. Materials and Structures, 2011,44(2):415-435
    [18] Nguyen TT, Waldmann D, Bui TQ. Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials. Computer Methods in Applied Mechanics and Engineering, 2019,348:1-28
    [19] Nguyen TT, Weiler M, Waldmann D. Experimental and numerical analysis of early age behavior in non-reinforced concrete. Construction and Building Materials, 2019,210:499-513
    [20] Nguyen TT, Waldmann D, Bui TQ. Phase field simulation of early-age fracture in cement-based materials. International Journal of Solids and Structures, 2020,191:157-172
    [21] Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 1998,46(8):1319-1342
    [22] Bourdin B, Francfort GA, Marigo JJ. The Variational Approach to Fracture. Berlin: Springer, 2008
    [23] Pham K, Amor H, Marigo JJ, et al. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics, 2011,20(4):618-652
    [24] Mesgarnejad A, Bourdin B, Khonsari MM. Validation simulations for the variational approach to fracture. Computer Methods in Applied Mechanics and Engineering, 2015,290:420-437
    [25] TannéE, Li T, Bourdin B, et al. Crack nucleation in variational phase-field models of brittle fracture. Journal of the Mechanics and Physics of Solids, 2018,110:80-99
    [26] Mandal TK, Nguyen VP, Wu JY. Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture. Engineering Fracture Mechanics, 2019,217:106532
    [27] Kumar A, Bourdin B, Francfort GA, et al. Revisiting nucleation in the phase-field approach to brittle fracture. Journal of the Mechanics and Physics of Solids, 2020: 104027
    [28] Wu JY. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 2017,103:72-99
    [29] Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000,48(4):797-826
    [30] Wu JY. A geometrically regularized gradient-damage model with energetic equivalence. Computer Methods in Applied Mechanics and Engineering, 2018,328:612-637
    [31] Wu JY, Nguyen VP. A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids, 2018,119:20-42
    [32] 吴建营. 固体结构损伤破坏统一相场理论, 算法和应用. 力学学报, 2021,53(2):301-329

    (Wu Jianying. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):301-329 (in Chinese))
    [33] Wu JY, Nguyen VP, Nguyen CT, et al. Phase field modeling of fracture. Advances in Applied Mechancis, 2020,53:1-183
    [34] Wu JY, Nguyen VP, Zhou H, et al. A variationally consistent phase-field anisotropic damage model for fracture. Computer Methods in Applied Mechanics and Engineering, 2020,358:112629
    [35] Cornelissen H, Hordijk D, Reinhardt H. Experimental determination of crack softening characteristics of normalweight and lightweight. Heron, 1986,31(2):45-46
    [36] Zhang P, Hu X, Wang X, et al. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus. Engineering Fracture Mechanics, 2018,204:268-287
    [37] Zhang P, Hu X, Yang S, et al. Modelling progressive failure in multi-phase materials using a phase field method. Engineering Fracture Mechanics, 2019,209:105-124
    [38] Wang Q, Feng YT, Zhou W, et al. A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion. Computer Methods in Applied Mechanics and Engineering, 2020,370:113270
    [39] Marboeuf A, Bennani L, Budinger M, et al. Electromechanical resonant ice protection systems: Numerical investigation through a phase-field mixed adhesive/brittle fracture model. Engineering Fracture Mechanics, 2020,230:106926
    [40] Wang Q, Zhou W, Feng YT. The phase-field model with an auto-calibrated degradation function based on general softening laws for cohesive fracture. Applied Mathematical Modelling, 2020,86:185-206
    [41] Loew PJ, Poh LH, Peters B, et al. Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering, 2020,370:113247
    [42] Mandal TK, Nguyen VP, Wu JY. A length scale insensitive anisotropic phase field fracture model for hyperelastic composites. International Journal of Mechanical Sciences, 2020,188:105941
    [43] Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010,83(10):1273-1311
    [44] Ginzburg V, Landau L. Toward the superconductivity theory. Zhurnal Eksp. Yheoret. Physics, 1950,29:1064
    [45] Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics, 1958,28(2):258-267
    [46] Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 1979,27(6):1085-1095
    [47] Karma A, Kessler DA, Levine H. Phase-field model of mode III dynamic fracture. Physical Review Letters, 2001,87(4):045501
    [48] Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, 1920,221:163-198.
    [49] Mumford DB, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989,42(5):577-685
    [50] Ambrosio L, Tortorelli VM. Approximation of functional depending on jumps by elliptic functional via t-convergence. Communications on Pure and Applied Mathematics, 1990,43(8):999-1036
    [51] Braides A. Approximation of Free-Discontinuity Problems. Berlin: Springer Science & Business Media, 1998
    [52] Nguyen VP, Wu JY. Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Computer Methods in Applied Mechanics and Engineering, 2018,340:1000-1022
    [53] Mandal TK, Nguyen VP, Wu JY. Evaluation of variational phase-field models for dynamic brittle fracture. Engineering Fracture Mechanics, 2020,235:107169
    [54] Barenblatt GI. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. Journal of Applied Mathematics and Mechanics, 1959,23(3):622-636
    [55] Ulm FJ, Coussy O. Couplings in early-age concrete: From material modeling to structural design. International Journal of Solids and Structures, 1998,35:4295-4311
    [56] Waller V. Relationship between mix design of concrete, generation of heat during hydration and compressive strength. [PhD Thesis]. France: école Nationale de Ponts et Chaussées, 1999
    [57] Feng DC, Wu JY. Phase-field regularized cohesive zone model (CZM) and size effect of concrete. Engineering Fracture Mechanics, 2018,197:66-79
    [58] Wu JY, Qiu JF, Nguyen VP, et al. Computational modeling of localized failure in solids: XFEM vs PF-CZM. Computer Methods in Applied Mechanics and Engineering, 2019,345:618-643
    [59] De Schutter G, Taerwe L. Degree of hydration-based description of mechanical properties of early age concrete. Materials and Structures, 1996,29(6):335-344
    [60] De Schutter G, Taerwe L. Fracture energy of concrete at early ages. Materials and Structures, 1997,30(2):67-71
    [61] Wu JY. Robust numerical implementation of non-standard phase-field damage models for failure in solids. Computer Methods in Applied Mechanics and Engineering, 2018,340:767-797
    [62] Wu JY, Huang Y, Nguyen VP. On the BFGS monolithic algorithm for the unified phase field damage theory. Computer Methods in Applied Mechanics and Engineering, 2020,360:112704
    [63] Wu JY, Huang Y. Comprehensive implementations of phase-field damage models in abaqus. Theoretical and Applied Fracture Mechanics, 2020,106:102440
    [64] Nocedal J, Wright S. Numerical Optimization. New York: Springer, 2006.
    [65] Matthies H, Strang G. The solution of nonlinear finite element equations. International Journal for Numerical Methods in Engineering, 1979,14(11):1613-1626
    [66] Kristensen PK, Martínez-Pa?eda E. Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics, 2020,107:102446
    [67] Wu J Y, Huang Y, Zhou H, et al. Three-dimensional phase-field modeling of mode I$+$ II/III failure in solids. Computer Methods in Applied Mechanics and Engineering, 2021,373:113537
    [68] Hossain AB, Weiss J. Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement and Concrete Composites, 2004,26(5):531-540
    [69] 刘宁, 刘光廷. 大体积混凝土结构随机温度徐变应力计算方法研究. 力学学报, 1997,29(2):189-202

    (Liu Ning, Liu Guangting. Methods for random thermal creep stress analysis of massive concrete structures. Acta Mechanica Sinica, 1997,29(2):189-202 (in Chinese))
    [70] 崔溦, 陈王, 王宁. 考虑性态变化的早期混凝土热湿力耦合分析及其应用. 土木工程学报, 2015,48(2):44-53

    (Cui Wei, Chen Wang, Wang Ning. Thermo-hydro-mechanical coupling analysis of early-age concrete with behavioral changes considered and its application. China Civil Engineering Journal, 2015,48(2):44-53 (in Chinese))
  • 加载中
计量
  • 文章访问数:  972
  • HTML全文浏览量:  146
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回