EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不等径颗粒间液桥力学参数及形态的试验研究

蒲诚 刘奉银 王劭涵 钟丽佳

蒲诚, 刘奉银, 王劭涵, 钟丽佳. 不等径颗粒间液桥力学参数及形态的试验研究. 力学学报, 2021, 53(7): 2090-2099 doi: 10.6052/0459-1879-21-019
引用本文: 蒲诚, 刘奉银, 王劭涵, 钟丽佳. 不等径颗粒间液桥力学参数及形态的试验研究. 力学学报, 2021, 53(7): 2090-2099 doi: 10.6052/0459-1879-21-019
Pu Cheng, Liu Fengyin, Wang Shaohan, Zhong Lijia. The force parameter and profile change of liquid bridge between two unequal spheres—an experiment study. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2090-2099 doi: 10.6052/0459-1879-21-019
Citation: Pu Cheng, Liu Fengyin, Wang Shaohan, Zhong Lijia. The force parameter and profile change of liquid bridge between two unequal spheres—an experiment study. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2090-2099 doi: 10.6052/0459-1879-21-019

不等径颗粒间液桥力学参数及形态的试验研究

doi: 10.6052/0459-1879-21-019
基金项目: 国家自然科学基金资助项目(12072260, 51679198)
详细信息
    作者简介:

    刘奉银, 教授, 主要研究方向: 颗粒土力学, 土力学. E-mail: liufy@xaut.edu.cn

  • 中图分类号: TU43

THE FORCE PARAMETER AND PROFILE CHANGE OF LIQUID BRIDGE BETWEEN TWO UNEQUAL SPHERES—AN EXPERIMENT STUDY

  • 摘要: 作为一种自然界中广泛存在的力, 液桥力的研究对制药、重金属回收、颗粒分离等领域具有十分重要的意义. 利用纳米多功能拉伸试验机测量不等径颗粒间液桥拉伸过程中的液桥力−位移曲线, 同时配合CCD工业相机记录拉伸全过程液桥形态的变化. 首先分析了液桥力−位移曲线形态、最大液桥力、断裂距离随粒径比及液桥体积的变化规律, 其次基于圆环假设及Y-L方程对本文试验结果的合理性进行验算, 最后针对圆环假设在液桥力计算中存在的不足分析了其原因, 并结合重力对液桥形态的影响对液桥拉伸全过程的形态变化进行了具体分析. 结果表明: 最大液桥力受粒径比的影响较大而受液桥体积的影响较小, 与最大液桥力相反, 断裂距离受液桥体积的影响较大而受粒径比的影响较小; 圆环假设可以较好地预测最大液桥力大小但对拉伸过程中的液桥力预测不准, 这是由于当液桥力达到最大值后液桥的外轮廓已不能用圆环表示; 根据重力对液桥形态的影响, 将拉伸过程液桥外轮廓的变化简化为重力影响可以忽略时的圆环形−抛物线形, 重力影响处于过渡阶段或影响较小时的长轴与短轴之比不断增大的椭圆形, 以及重力影响不可忽略时的“冷却塔形”−双曲线形.

     

  • 图  1  试验仪器

    Figure  1.  Testing machine

    图  2  试样安装示意图

    Figure  2.  Diagram of specimen installation

    图  3  液桥受力示意图

    Figure  3.  Forces in the neck of liquid bridge

    图  4  液桥力−位移曲线

    Figure  4.  Curves of liquid force−distance

    图  5  最大液桥力−液桥体积图

    Figure  5.  Curves of maximum liquid force–liquid volume under different radius ratio condition

    图  6  断裂距离–粒径比图

    Figure  6.  Curves of rupture distance–liquid volume under different radius ratio condition

    图  7  测量示意图

    Figure  7.  Diagram of measurement

    图  8  计算值与实测值的比较

    Figure  8.  Comparison of calculation results and experimental results

    图  9  液桥形态变化图

    Figure  9.  Changes of liquid bridge shape

    图  10  液桥外轮廓变化示意图

    Figure  10.  Diagram of the liquid bridge profile change

    表  1  20 °C条件下丙三醇与水的物理力学参数

    Table  1.   Physical mechanical parameters for glycerol and water at 20 °C

    LiquidDensity/(g·cm−3)Surface tensile/(N·m−1)Viscosity/(Pa·s)
    glycerol1.260.0630.15
    water1.000.0711.009 × 10−3
    下载: 导出CSV

    表  2  测量及计算结果

    Table  2.   Results of measurement and calculation

    Radius ratioLiquid volume/μLr1 left/mmr1 right/mmr2/mmFliq left/μNFliq right/μNFliq equal/μNExperimental results/μN
    0.80.10.400.230.700.380.570.480.42
    0.250.410.480.850.520.470.490.45
    0.50.450.440.900.530.540.540.47
    1.00.350.801.000.760.450.600.47
    1.50.700.641.030.500.530.510.48
    0.50.10.450.450.710.360.360.360.35
    0.250.390.500.750.430.370.400.37
    0.50.410.500.790.460.400.430.38
    1.00.650.800.900.420.380.400.39
    1.50.810.831.000.400.440.420.39
    1.00.10.350.350.780.500.500.500.50
    0.250.410.430.880.550.530.540.52
    0.50.500.480.990.580.600.590.55
    1.00.580.631.080.610.580.600.58
    1.50.640.701.120.610.580.590.58
    下载: 导出CSV

    表  3  Bo数及重力的影响

    Table  3.   Bo number and effects of gravity

    Radius ratioV/μLV*d2BoV*·BoGravity effect
    0.5 0.1 0.015 0.071 0.013 1.9×10−4 No
    0.25 0.038 0.147 0.027 0.001 No
    0.5 0.076 0.278 0.051 0.004 No
    1.0 0.152 0.500 0.092 0.014 Transition
    1.5 0.228 0.732 0.135 0.031 Yes
    0.8 0.1 0.009 0.070 0.013 1.1×10−4 No
    0.25 0.022 0.167 0.031 0.0007 No
    0.5 0.044 0.316 0.058 0.0026 No
    1.0 0.088 0.556 0.102 0.0090 No
    1.5 0.132 0.750 0.138 0.0182 Yes
    1.0 0.1 0.006 0.064 0.012 7.6×10−5 No
    0.25 0.016 0.142 0.026 0.0004 No
    0.5 0.032 0.253 0.047 0.0015 No
    1.0 0.064 0.463 0.085 0.0054 No
    1.5 0.096 0.670 0.124 0.0119 Transition
    下载: 导出CSV
  • [1] De Bisschop FRE, Rigole WJL. A physical model for liquid capillary bridges between adsorptive solid spheres: the nodoid of plateau. Journal of Colloid and Interface Science, 1982, 88(1): 117-128 doi: 10.1016/0021-9797(82)90161-8
    [2] Lian GP, Thornton C, Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid and Interface Science, 1993, 161(1): 138-147 doi: 10.1006/jcis.1993.1452
    [3] Darabi P, Li TW, Pougatch K, et al. Modeling the evolution and rupture of stretching pendular liquid bridges. Chemical Engineering Science, 2010, 65(15): 4472-4483 doi: 10.1016/j.ces.2010.04.003
    [4] Pitois O, Moucheront P, Chateau X. Rupture energy of a pendular liquid bridge. European Physical Journal B, 2001, 23(1): 79-86 doi: 10.1007/s100510170084
    [5] Pitois O, Moucheront P, Chateau X. Liquid bridge between two moving spheres: an experimental study of viscosity effects. Journal of Colloid and Interface Science, 2000, 231(1): 26-31 doi: 10.1006/jcis.2000.7096
    [6] Mazzone DN, Tardos GI, Pfeffer R. The effect of gravity on the shape and strength of a liquid bridge between two spheres. Journal of Colloid and Interface Science, 1986, 113(2): 544-556 doi: 10.1016/0021-9797(86)90187-6
    [7] Bayramli E, Abou-Obeid A, Van De Ven TGM. Liquid bridges between spheres in a gravitational field. Journal of Colloid and Interface Science, 1987, 116(2): 490-502 doi: 10.1016/0021-9797(87)90145-7
    [8] Farmer TP, Bird JC. Asymmetric capillary bridges between contacting spheres. Journal of Colloid and Interface Science, 2015, 454(4): 192-199
    [9] Soulié F, Cherblanc F, El Youssouh MS, et al. Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(3): 213-228 doi: 10.1002/nag.476
    [10] Willett CD, Adams MJ, Johnson SA, et al. Capillary bridges between two spherical bodies. Langmuir, 2000, 16(24): 9396-9405 doi: 10.1021/la000657y
    [11] Lu N, Lechman J, Miller KT. Experimental verification of capillary force and water retention between uneven-sized spheres. Journal of Engineering Mechanics, 2008, 134(5): 385-395 doi: 10.1061/(ASCE)0733-9399(2008)134:5(385)
    [12] Rossetti D, Pepin X, Simons SJR. Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process. Journal of Colloid and Interface Science, 2003, 261(1): 161-169 doi: 10.1016/S0021-9797(03)00043-2
    [13] Bozkurt MG, Fratta D, Likos WJ. Capillary forces between equally sized moving glass beads: an experimental study. Canadian Geotechnical Journal, 2017, 54(5): 1300-1309
    [14] Lievano D, Velankar S, McCarthy JJ. The rupture force of liquid bridges in two and three particle systems. Powder Technology, 2017, 313(2): 18-26
    [15] Wang JP, Gallo E, Franois B. Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technology, 2017, 305(6): 89-98
    [16] 刘建林, 李广帅, 聂志欣. 轴对称液桥的形貌与液桥力. 西华大学学报(自然科学版), 2010, 29(3): 1-5 (Liu Jianlin, Li Guangshuai, Nie Zhixin. Morphology and liquid bridge force of an axisymmetric liquid bridge. Journal of Xihua University (Natural Science) , 2010, 29(3): 1-5 (in Chinese) doi: 10.3969/j.issn.1673-159X.2010.03.001
    [17] 王学卫, 于洋. 重力影响下板间液桥断裂距离研究. 实验力学, 2012, 27(1): 70-76 (Wang Xuewei, Yu Yang. Study of gravitation effect on rupture distance of liquid bridge between two flat substrates. Journal of Experimental Mechanics, 2012, 27(1): 70-76 (in Chinese)
    [18] 庄大伟, 杨艺菲, 胡海涛等. 竖直平板间液桥形状的观测与预测模型开发. 化工学报, 2016, 67(6): 2224-2229 (Zhuang Dawei, Yang Yifei, Hu Haitao, et al. Visualization and prediction model on shape of liquid bridge. CIESC Journal, 2016, 67(6): 2224-2229 (in Chinese)
    [19] 朱朝飞, 贾建援, 付红志等. 狭长平行板间液桥形态及受力研究. 工程力学, 2016, 33(6): 222-229 (Zhu Zhaofei, Jia Jianyuan, Fu Hongzhi, et al. A Study of shape and forces of liquid bridge between two slender parallel flat plates. Engineering Mechanics, 2016, 33(6): 222-229 (in Chinese)
    [20] 王辉, 焦杨, 辛文宇等. 湿颗粒分离中的液桥力作用及临界分离初速度. 大学物理, 2015, 34(7): 44-48 (Wang Hui, Jiao Yang, Xin Wenyu, et al. Effect of liquid bridge force and critical velocity for the separation of wet granule. College Physics, 2015, 34(7): 44-48 (in Chinese)
    [21] 蒲诚, 刘奉银, 张昭等. 不同含液量下颗粒间液桥力及形态的试验研究. 水利学报, 2020, 51(1): 81-91 (Pu Cheng, Liu Fengyin, Zhang Zhao, et al. Liquid force and profile between two moving sphere particles under different liquid content condition: An experiment study. Journal of Hydraulic Engineering, 2020, 51(1): 81-91 (in Chinese)
    [22] 余莲英, 周丹洋, 徐春晖等. 基于拟土颗粒DEM数值模型的静态液桥力测试方法. 中国农业大学学报, 2017, 22(11): 68-74 (Yu Lianying, Zhou Danyang, Xu Chunhui, et al. Method of measuring the static liquid bridge force of soil particles based on DEM modeling. Journal of China Agricultural University, 2017, 22(11): 68-74 (in Chinese) doi: 10.11841/j.issn.1007-4333.2017.11.07
    [23] Kazuyuki H, Kazuo T, Koichi I. The capillary binding force of a liquid bridge. Powder Technology, 1974, 10(2): 231-242
    [24] Fisher RA. On the capillary forces in an ideal soil: correction of formulae given by WB Haines. The Journal of Agricultural Science, 1926, 16(3): 492-505 doi: 10.1017/S0021859600007838
    [25] Gillespie T, Settineri WJ. The effect of capillary liquid on the force of adhesion between spherical solid particles. Journal of Colloid and Interface Science, 1967, 24(2): 199-202 doi: 10.1016/0021-9797(67)90220-2
    [26] Clark WC, Haynes JM, Mason G. Liquid bridges between a sphere and a plane. Chemical Engineering Science, 1968, 23(7): 810-812 doi: 10.1016/0009-2509(68)85021-3
    [27] 张昭, 刘奉银, 齐吉琳等. 粗颗粒间液桥毛细力演化规律的动态计算方法. 岩土力学, 2016, 37(8): 2263-2270 (Zhang Zhao, Liu Fengyin, Qi Jiling, et al. A dynamic calculation method for evolution law of capillarity forces of liquid bridge between coarse particles. Rock and Soil Mechanics, 2016, 37(8): 2263-2270 (in Chinese)
    [28] 贺炜, 赵明华, 陈永贵等. 土-水特征曲线滞后现象的微观机制与计算分析. 岩土力学, 2010, 31(4): 1078-1083 (He Wei, Zhao Minghua, Chen Yonggui, et al. Theoretical study of microscopical mechanisms and computational method of hysteresis in SWCCs. Rock and Soil Mechanics, 2010, 31(4): 1078-1083 (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012
    [29] 周凤玺, 曹小林, 马强. 颗粒间的毛细作用以及吸应力特征曲线分析. 岩土力学, 2017, 38(7): 2036-2042 (Zhou Fengxi, Cao Xiaolin, Ma Qiang. Analysis of capillary cohesion and suction stress characteristic curve between two spheres. Rock and Soil Mechanics, 2017, 38(7): 2036-2042 (in Chinese)
    [30] 杜友耀, 李锡夔. 二维液桥计算模型及湿颗粒材料离散元模拟. 计算力学学报, 2015, 32(4): 496-502 (Du Youyao, Li Xikui. 2D computational model of liquid bridge and DEM simulation of wet granular materials. Chinese Journal of Computational Mechanics, 2015, 32(4): 496-502 (in Chinese) doi: 10.7511/jslx201504009
    [31] Adams MJ, Johnson SA, Seville JPK, et al. Mapping the influence of gravity on pendular liquid bridges between rigid spheres. Langmuir, 2002, 18(16): 6180-6184 doi: 10.1021/la011823k
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  32
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 录用日期:  2021-05-13
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回