EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TA2钛合金开口柱壳外爆碎片分布研究

吴文苍 董新龙 庞振 周风华

吴文苍, 董新龙, 庞振, 周风华. TA2钛合金开口柱壳外爆碎片分布研究[J]. 力学学报, 2021, 53(6): 1795-1806. doi: 10.6052/0459-1879-21-017
引用本文: 吴文苍, 董新龙, 庞振, 周风华. TA2钛合金开口柱壳外爆碎片分布研究[J]. 力学学报, 2021, 53(6): 1795-1806. doi: 10.6052/0459-1879-21-017
Wu Wencang, Dong Xinlong, Pang Zhen, Zhou Fenghua. STUDY ON FRAGMENTS DISTRIBUTION OF EXPLOSIVELY DRIVEN CYLINDERS FOR TA2 TITANIUM ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795-1806. doi: 10.6052/0459-1879-21-017
Citation: Wu Wencang, Dong Xinlong, Pang Zhen, Zhou Fenghua. STUDY ON FRAGMENTS DISTRIBUTION OF EXPLOSIVELY DRIVEN CYLINDERS FOR TA2 TITANIUM ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795-1806. doi: 10.6052/0459-1879-21-017

TA2钛合金开口柱壳外爆碎片分布研究

doi: 10.6052/0459-1879-21-017
基金项目: 1)国家自然科学基金资助项目(11672143);国家自然科学基金资助项目(11932018)
详细信息
    作者简介:

    2)董新龙, 教授, 主要研究方向: 冲击动力学. E-mail: dongxinlong@nbu.edu.cn

    通讯作者:

    董新龙

  • 中图分类号: O383+.3

STUDY ON FRAGMENTS DISTRIBUTION OF EXPLOSIVELY DRIVEN CYLINDERS FOR TA2 TITANIUM ALLOY

  • 摘要: 金属柱壳爆炸膨胀断裂机制及其对碎片分布、特征尺寸的影响是应用物理、力学、兵器工程等领域共同关心的重要课题, 但目前除数值模拟外, 考虑断裂机制的简单二维碎裂模型尚未出现.开展TA2钛合金开口柱壳在不同装药条件下的碎裂实验研究, 通过对软回收碎片的统计及微观分析, 探讨金属柱壳外爆断裂模式及二维碎片分布规律, 结果显示:(1) TA2钛合金柱壳在实验爆压(7 $\sim$ 25 GPa)下宏观断口均为剪切断裂模式, 但机制不同, 在较高爆压下柱壳剪切断裂由多重绝热剪切带破坏控制, 在较低压力下为剪切破坏;(2) 与一维拉伸碎裂相比, 柱壳爆炸碎裂不充分, 碎片质量更符合$\beta=1$ (或更接近1)的指数分布; 爆炸碎裂越充分, 碎片越小并趋于均匀, $\beta$趋于较小的值, 趋向Mott和Linfoot提出的泊松统计分布形式;(3) Rayleigh分布可以较好描述柱壳碎片的宽度分布规律, 不同爆压下柱壳碎片宽度归一化尺寸分布具有相似性, 呈现"量子化"特性, 即存在最小的特征尺寸; (4) TA2柱壳碎片特征尺寸远大于G-K剪切断裂公式预测的尺寸, G-K剪切式描述的是多重绝热剪切带间距.本研究为金属柱壳碎片特征、分布规律及其模型分析提供了重要参考.

     

  • [1] Gurney RW. The initial velocities of fragments from bombs, shells and grenades. Ballistic Research Laboratories, 1943, 405: 1-22
    [2] Taylor GI. The Fragmentation of Tubular Bombs. London: Cambridge University Press, 1963: 387-390
    [3] Mott NF. A Theory of the Fragmentation of Shells and Bombs//Grady D ed, Fragmentation of Rings and Shells. Shock Wave and High Pressure Phenomena, Berlin, Heidelberg: Springer, 2006: 243-294
    [4] Mott NF. Fragmentation of shell cases. Proceedings of the Royal Society of London, 1947, 189(1018): 300-308
    [5] Grady DE. Local inertial effects in dynamic fragmentation. Journal of Applied Physics, 1982, 53(1): 322-325
    [6] Grady DE, Kipp ME. Mechanisms of dynamic fragmentation: Factors governing fragment size. Mechanics of Materials, 1985, 4(3-4): 311-320
    [7] 熊迅, 王珠, 郑宇轩 等. 石英玻璃杆Taylor撞击实验的数值模拟. 力学学报, 2019, 51(4): 1082-1090

    (Xiong Xun, Wang Zhu, Zheng Yuxuan, et al. Numerical simulations of taylor impact experiments of quartz glass bars. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1082-1090 (in Chinese))
    [8] Kipp ME, Grady DE. Dynamic fracture growth and interaction in one dimension. Journal of the Mechanics & Physics of Solids, 1985, 33(4): 399-415
    [9] Grady DE, Olsen ML. A statistics and energy based theory of dynamic fragmentation. International Journal of Impact Engineering, 2003, 29(1-10): 293-306
    [10] 陈磊, 周风华, 汤铁钢 等. 韧性金属圆环高速膨胀碎裂过程的有限元模拟. 力学学报, 2011, 43(5): 861-869

    (Chen Lei, Zhou Fenghua, Tang Tiegang, et al. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861-869 (in Chinese))
    [11] 郑宇轩, 胡时胜, 周风华. 韧性材料的高应变率拉伸碎裂过程及材料参数影响. 固体力学学报, 2012, 33(4): 358-369

    (Zheng Yuxuan, Hu Shisheng, Zhou Fenghua. High strain rate tensile fragmentation process of ductile materials and the effects of material parameters. Acta Mechanica Solida Sinica, 2012, 33(4): 358-369 (in Chinese))
    [12] Grady D. Fragmentation of Rings and Shells. Berlin, Heidelberg: Springer, 2006: 153-195
    [13] Altynova M, Hu X, Daehn GS. Increased ductility in high velocity electromagnetic ring expansion. Metallurgical and Materials Transactions A, 1996, 27(7): 1837-1844
    [14] Zhang H, Ravi-Chandar K. Dynamic fragmentation of ductile materials. Journal of Physics D Applied Physics, 2009, 42(21): 1-16
    [15] Grady DE, Hightower MM. Natural Fragmentation of Exploding Cylinders//Meyers M A, Murr L E, Staudhammer K P, eds. Shock Wave and High-Strain Rate Phenomena in Materials. San Diego, CA (USA), 1990.New York: Marcel Dekker, Inc., 1992: 713-721
    [16] Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. Journal of the Mechanics and Physics of Solids, 1987, 35: 95-119
    [17] Hoggatt CR, Recht RF. Fracture behavior of tubular bombs. Journal of Applied Physics, 1968, 39(3): 1856-1862
    [18] 高光发, 雷天刚, 戴兰宏. 第三届全国爆炸与冲击动力学青年学者学术研讨会报告综述. 力学学报, 2020, 52(4): 1211-1219

    (Gao Guangfa, Lei Tiangang, Dai Lanhong. Review of the third national symposium on explosion and impact dynamics for young scholars. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1211-1219 (in Chinese))
    [19] 李涛, 胡海波, 尚海林 等. 强约束球形装药反应裂纹传播和反应烈度表征实验. 爆炸与冲击, 2020, 40(1): 18-25

    (Li Tao, Hu Haibo, Shang Hailin, et al. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement. Explosion and Shock Waves, 2020, 40(1): 18-25 (in Chinese))
    [20] 卢秋虹, 王宁, 范诚 等. 壁厚对HR2钢柱壳爆轰加载下膨胀断裂行为的影响. 材料研究学报, 2020(4): 241-246

    (Lu Qiuhong, Wang Ning, Fan Cheng, et al. Effect of shell thickness on expanding fracture behavior of HR2 steel cylinders under explosive loading. Chinese Journal of Materials Research, 2020(4): 241-246 (in Chinese))
    [21] 杨云川, 朱建军, 郑宇 等. 战斗部壳体爆炸破片体/线分形维数研究. 兵工学报, 2018, 8: 1499-1506

    (Yang Yunchuan, Zhu Jianjun, Zheng Yu, et al. Research on the volume and line fractal dimensions of fragments from the explosion of warhead shell. Acta Armamentarii, 2018, 8: 1499-1506 (in Chinese))
    [22] 罗渝松, 李伟兵, 陈志闯 等. 内爆加载下金属柱壳的冻结回收方法. 爆炸与冲击, 2020, 40(10): 87-96

    (Luo Yusong, Li Weibing, Chen Zhichuang, et al. A freezing recovery method for metallic cylinder shells under internal explosive loading. Explosion and Shock Waves, 2020, 40(10): 87-96 (in Chinese))
    [23] 李茂, 侯海量, 朱锡 等. 模拟破片杀伤战斗部空爆冲击波与高速破片群联合作用的等效试验方法. 振动与冲击, 2020(1): 184-190

    (Li Mao, Hou Hailiang, Zhu Xi, et al. Equivalent test method to simulate combined damage action of air blast shock wave and high speed fragment group of fragment killing warhead. Journal of Vibration and Shock, 2020(1): 184-190 (in Chinese))
    [24] Dany F. Estimating the metal acceleration ability of high explosives. Defence Technology, 2020, 1: 225-231
    [25] Abrosimov NA, Igumnov LA, Novosel'Tseva NA. Numerical analysis of the effect of strain rate on the dynamic strength of cylindrical metal-plastic shells under explosive loading. Journal of Applied Mechanics and Technical Physics, 2020, 61(2): 267-276
    [26] Guo ZW, Huang GY, Liu CM, et al. Velocity axial distribution of fragments from non-cylindrical symmetry explosive-filled casing. International Journal of Impact Engineering, 2018, 118: 1-10
    [27] 任会兰, 储著鑫, 栗建桥 等. B炸药爆炸过程中电磁辐射研究. 力学学报, 2020, 52(4): 1199-1210

    (Ren Huilan, Chu Zhuxin, Li Jianqiao, et al. Research on electromagnetic radiation during the explosion progress of composition B explosives. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1199-1210 (in Chinese))
    [28] л.п. 奥尔连科, 爆炸物理学(第3版上). 孙承纬, 译. 北京: 科学出版社, 2011: 170-174

    (Oly. Orlenko, Explosion Physics. 3 (First). Sun Chengwei, Translate. Beijing: Science Press, 2011: 170-174(in Chinese))
    [29] 胡海波, 汤铁钢, 胡八一 等. 金属柱壳在爆炸加载断裂中的单旋现象. 爆炸与冲击, 2004(2): 97-107

    (Hu Haibo, Tang Tiegang, Hu Bayi, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells. Explosion and Shock Waves, 2004(2): 97-107 (in Chinese))
    [30] Mott NF, Linfoot EH. A Theory of Fragmentation//Grady D ed, Fragmentation of Rings and Shells. Shock Wave and High Pressure Phenomena., Berlin, Heidelberg: Springer, 2006: 207-226
    [31] Grady DE, Kipp ME. Fragmentation properties of metals. International Journal of Impact Engineering, 1997, 20(1-5): 293-308
    [32] Mock W, Holt WH. Fragmentation behavior of armco iron and HF-1 steel explosive filled cylinders. Journal of Applied Physics, 1983, 54: 2344-2351
    [33] Odintsov VA. Hyper exponential spectra of exponential fracture. Mechanics of Solids, 1992, 27(5): 42-48
    [34] Zhou F, Molinari JF, Ramesh KT. Characteristic fragment size distributions in dynamic fragmentation. Applied Physics Letters, 2006, 88(26): 1210-192
    [35] 郑宇轩, 陈磊, 胡时胜 等. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律. 力学学报, 2013, 45(4): 580-587

    (Zheng Yuxuan, Chen Lei, Hu Shisheng, et al. Characteristics of fragment size distribution of ductile materials fragentized under high strainrate tension. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580-587 (in Chinese))
    [36] Grady DE, Benson DA. Fragmentation of metal rings by electromagnetic loading. Experimental Mechanics, 1983, 23(4): 393-400
    [37] Grady DE, Kipp ME, Benson DA. Mechanical Properties of Materials at High Rates of Strain, London, Institute of Physics, 1984: 315
    [38] Lloyd R. Conventional warhead systems physics and engineering design. American Institute of Aeronautics and Astronautics, Inc, 1998: 25-27
    [39] Sun G, Wang X, Gao W, et al. Expansion fracture behavior of metallic cylindrical shell caused by explosive detonation. IOP Conference Series: Earth and Environmental Science, 2019, 267(4): 1-8
    [40] 沈飞, 王辉, 袁建飞 等. 炸药格尼系数的一种简易估算法. 火炸药学报, 2013, 36(6): 36-38

    (Shen Fei, Wang Hui, Yuan Jianfei, et al. A simple estimation method for gurney coefficient of explosive. Chinese Journal of Explosives & Propellants, 2013, 36(6): 36-38 (in Chinese))
    [41] Goto DM, Becker R, Orzechowski TJ, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders. International Journal of Impact Engineering, 2008, 35(12): 1547-1556
    [42] Lambert DE, Weiderhold J, Hopson MV, et al. Controlled loading fragmentation: Experiments and continuum damage modeling. AFRL-RW-EG-TR-2010-106, USA: Air Force Research Laboratory, 2010: 16-23
    [43] 周刚毅. TA2钛合金绝热剪切破坏特性及应力状态、晶粒度影响. [博士论文]. 宁波: 宁波大学, 2018: 48-83

    (Zhou Gangyi. Adiabatic shearing behavior of TA2 titanium alloy and its influence of stress state, grain size. [PhD Thesis]. Ningbo: Ningbo University, 2018: 48-83 (in Chinese))
    [44] 周刚毅, 董新龙, 付应乾 等. 不同加载状态下TA2钛合金绝热剪切破坏响应特性. 力学学报, 2016, 48(6): 1353-1361

    (Zhou Gangyi, Dong Xinlong, Fu Yingqian, et al. An experimental study on adiabatic shear behavior of TA2 titanium alloy subject to different loading condition. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361 (in Chinese))
  • 加载中
计量
  • 文章访问数:  681
  • HTML全文浏览量:  143
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-05
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回