EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑界面力学性能的组件及结构的协同优化

马晶 赵明宣 王浩淼 刘湃 亢战

马晶, 赵明宣, 王浩淼, 刘湃, 亢战. 考虑界面力学性能的组件及结构的协同优化[J]. 力学学报, 2021, 53(6): 1758-1768. doi: 10.6052/0459-1879-21-010
引用本文: 马晶, 赵明宣, 王浩淼, 刘湃, 亢战. 考虑界面力学性能的组件及结构的协同优化[J]. 力学学报, 2021, 53(6): 1758-1768. doi: 10.6052/0459-1879-21-010
Ma Jing, Zhao Mingxuan, Wang Haomiao, Liu Pai, Kang Zhan. INTEGRATED OPTIMIZATION OF EMBEDDED COMPONENTS AND STRUCTURE CONSIDERING MECHANICAL PROPERTIES OF CONNECTING INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1758-1768. doi: 10.6052/0459-1879-21-010
Citation: Ma Jing, Zhao Mingxuan, Wang Haomiao, Liu Pai, Kang Zhan. INTEGRATED OPTIMIZATION OF EMBEDDED COMPONENTS AND STRUCTURE CONSIDERING MECHANICAL PROPERTIES OF CONNECTING INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1758-1768. doi: 10.6052/0459-1879-21-010

考虑界面力学性能的组件及结构的协同优化

doi: 10.6052/0459-1879-21-010
基金项目: 1)国家重点研发计划(2017YFB0203604);国家自然科学基金(11902064)
详细信息
    作者简介:

    2)刘湃, 博士后, 主要研究方向: 结构拓扑优化. E-mail: pailiu@dlut.edu.cn

    通讯作者:

    刘湃

  • 中图分类号: O346

INTEGRATED OPTIMIZATION OF EMBEDDED COMPONENTS AND STRUCTURE CONSIDERING MECHANICAL PROPERTIES OF CONNECTING INTERFACE

  • 摘要: 包含多个内嵌功能组件及支撑结构的多组件结构因其轻量化、多功能等优良特性被广泛应用于航空航天等领域.已有的多组件结构拓扑优化研究大多基于理想界面假设,忽略了材料连接界面可能发生的破坏. 本文针对包含多个内嵌式功能性组件的结构,考虑连接界面的力学性能, 对组件的形状、布局及支撑材料的拓扑进行协同优化,以实现多组件结构的优良承载性能. 首先,基于超椭圆模型对内嵌组件的形状及布局进行显式的参数化描述,并构造其水平集函数表达; 进而,结合组件及支撑材料的水平集拓扑描述、内聚力模型及扩展有限元方法(extended finite element method, XFEM), 在固定网格下对随优化迭代不断演化的结构拓扑及连接界面的力学性能进行准确描述;进一步, 建立水平集法框架下考虑界面力学性能的多组件结构拓扑优化列式,基于伴随变量法推导解析的灵敏度并采用梯度优化算法求解优化问题.本文采用该优化框架分别对内嵌组件的悬臂梁和MBB梁进行协同优化, 在优化过程中,发现组件的初始布局对最终设计有很大的影响, 并且可能导致不良结构.为了避免此情况, 本文提出了两个阶段的优化策略,即首先对组件布局和形状进行优化, 再进行结构和内嵌组件的协同优化.数值结果显示, 在优化结果中功能性组件及界面通常分布于结构受压应力作用的区域,且连接界面最优形状呈现为曲率较小的光滑曲线,该设计避免界面发生拉伸及剪切破坏, 有效提高了结构的承载力,同时也表明了本文所提出考虑连接界面力学性能拓扑优化方法的有效性.

     

  • [1] Bends?e MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics And Engineering, 1988, 71(2): 197-224
    [2] Kambampati S, Townsend S, Kim HA. Coupled aerostructural level set topology optimization of aircraft wing boxes. AIAA Journal, 2020, 58(8): 3614-3624
    [3] Gomes P, Palacios R. Aerodynamic driven multidisciplinary topology optimization of compliant airfoils//AIAA Scitech 2020 Forum. Orlando, FL, 2020-1-6-10, American Institute of Aeronautics and Astronautics, 2020
    [4] Talay E, ?zkan C, Gürta? E. Designing lightweight diesel engine alternator support bracket with topology optimization methodology. Structural And Multidisciplinary Optimization, 2021, DOI: 10.1007/s00158-020-02812-z
    [5] Baandrup M, Sigmund O, Polk H, et al. Closing the gap towards super-long suspension bridges using computational morphogenesis. Nature Communications, 2020, 11(1): 1-7
    [6] Bekas DG, Hou Y, Liu Y, et al. 3D printing to enable multifunctionality in polymer-based composites: A review. Composites Part B: Engineering, 2019, 179: 1-13
    [7] Ferrari F, Sigmund O. A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D. Structural And Multidisciplinary Optimization, 2020: 2211-2228
    [8] Huang X, Xie YM. A further review of ESO type methods for topology optimization. Structural and Multidisciplinary Optimization, 2010, 41(5): 671-683
    [9] Wang L, Zhang H, Zhu M, et al. A new evolutionary structural optimization method and application for aided design to reinforced concrete components. Structural and Multidisciplinary Optimization, 2020, 62(5): 2599-2613
    [10] Wang MY, Wang X. "Color" level sets: A multi-phase method for structural topology optimization with multiple materials. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6-8): 469-496
    [11] van Dijk NP, Maute K, Langelaar M, et al. Level-set methods for structural topology optimization: A review. Structural and Multidisciplinary Optimization, 2013, 48(3): 437-472
    [12] 王亚光. 考虑特定制造约束的水平集拓扑优化方法. [博士论文]. 大连: 大连理工大学, 2019

    (Wang Yaguang. Level set topology optimization method considering manufacturing constraints. [PhD Thesis]. Dalian: Dalian University of Technology, 2019 (in Chinese))
    [13] Lin Y, Zhu W, Li J, et al. Structural topology optimization using a level set method with finite difference updating scheme. Structural And Multidisciplinary Optimization, 2021, doi: https://doi.org/10.1007/s00158-020-02779-x
    [14] 隋允康, 彭细荣, 叶红玲 等. 互逆规划理论及其用于建立结构拓扑优化的合理模型. 力学学报, 2019, 51(6): 1940-1948

    (Sui Yongkang, Peng Xirong, Ye Hongling, et al. Reciprocal programming theory and its application to establish a reasonable modelof structural topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1940-1948(in Chinese))
    [15] 蔡守宇, 张卫红, 高彤 等. 基于固定网格和拓扑导数的结构拓扑优化自适应泡泡法. 力学学报, 2019, 51(4): 1235-1244

    (Cai Shouyu, Zhang Weihong, Gao Tong, et al. Adaptive bubble method using fixed mesh and topological derivative for structuraltopology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1235-1244(in Chinese))
    [16] 张卫红, 郭文杰, 朱继宏. 部件级多组件结构系统的整体式拓扑布局优化. 航空学报, 2015, 36(8): 2662-2669

    (Zhang Weihong, Guo Wenjie, Zhu Jihong. Integrated layout and topology optimization design of multi-component systems with assembly units. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2662-2669 (in Chinese))
    [17] 朱继宏, 高欢欢, 张卫红 等. 航天器整体式多组件结构拓扑优化设计与应用. 航空制造技术, 2014, 458(14): 26-29

    (Zhu Jihong, Gao Huanhuan, Zhang Weihong, et al. Design and applications of topology optimization techniques in aerospace multi-component structures. Aeronautical Manufacturing Technology, 2014, 458(14): 26-29 (in Chinese))
    [18] 朱继宏, 郭文杰, 张卫红 等. 多组件结构系统布局拓扑优化中处理组件干涉约束的惩罚函数方法. 航空学报, 2016, 37(12): 3721-3733

    (Zhu Jihong, Guo Wenjie, Zhang Weihong, et al. A penalty function-based method for dealing with overlap constraints in integrated layout and topology optimization design of multi-component systems. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3721-3733 (in Chinese))
    [19] Bends?e MP, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics (Ingenieur Archiv), 1999, 69(9-10): 635-654
    [20] Wang Y, Luo Z, Kang Z, et al. A multi-material level set-based topology and shape optimization method. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1570-1586
    [21] 王选, 胡平, 龙凯. 考虑嵌入移动孔洞的多相材料布局优化. 力学学报, 2019, 51(3): 852-862

    (Wang Xuan, Hu Ping, Long Kai. Multiphase material layout optimization considering embedding movable holes. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 852-862 (in Chinese))
    [22] Lawry M, Maute K. Level set topology optimization of problems with sliding contact interfaces. Structural and Multidisciplinary Optimization, 2015, 52(6): 1107-1119
    [23] Lawry M, Maute K. Level set shape and topology optimization of finite strain bilateral contact problems. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1340-1369
    [24] Liu P, Luo Y, Kang Z. Multi-material topology optimization considering interface behavior via XFEM and level set method. Computer Methods in Applied Mechanics and Engineering, 2016, 308: 113-133
    [25] Liu P, Kang Z. Integrated topology optimization of multi-component structures considering connecting interface behavior. Computer Methods in Applied Mechanics and Engineering, 2018, 341: 851-887
    [26] 刘湃. 考虑界面力学性能的多材料结构拓扑优化设计研究. [博士论文]. 大连: 大连理工大学, 2019

    (Liu Pai. Multi-material structural topology optimization considering mechanical interface behaviors. [PhD Thesis]. Dalian: Dalian University of Technology, 2019 (in Chinese))
    [27] Chu S, Xiao M, Gao L, et al. Topology optimization of multi-material structures with graded interfaces. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 1096-1117
    [28] Russ JB, Waisman H. Topology optimization for brittle fracture resistance. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 238-263
    [29] Da D, Yvonnet J. Topology optimization for maximizing the fracture resistance of periodic quasi-brittle composites structures. Materials, 2020, 13(15): 3279
    [30] Niu C, Zhang W, Gao T. Topology optimization of continuum structures for the uniformity of contact pressures. Structural and Multidisciplinary Optimization, 2019, 60(1): 185-210
    [31] Svanberg K. The method of moving asymptotes-A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373
    [32] 周储伟, 杨卫, 方岱宁. 内聚力界面单元与复合材料的界面损伤分析. 力学学报, 1999, 31(3): 3-5

    (Zhou Chuwei, Yang Wei, Fang Daining. Cohesive interface element and interfacial damage analysis of composites. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 3-5 (in Chinese))
    [33] Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 1999, 44(9): 1267-1282
    [34] Fries TP, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253-304
  • 加载中
计量
  • 文章访问数:  773
  • HTML全文浏览量:  158
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-06
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回