[1] |
Bends?e MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics And Engineering, 1988, 71(2): 197-224
|
[2] |
Kambampati S, Townsend S, Kim HA. Coupled aerostructural level set topology optimization of aircraft wing boxes. AIAA Journal, 2020, 58(8): 3614-3624
|
[3] |
Gomes P, Palacios R. Aerodynamic driven multidisciplinary topology optimization of compliant airfoils//AIAA Scitech 2020 Forum. Orlando, FL, 2020-1-6-10, American Institute of Aeronautics and Astronautics, 2020
|
[4] |
Talay E, ?zkan C, Gürta? E. Designing lightweight diesel engine alternator support bracket with topology optimization methodology. Structural And Multidisciplinary Optimization, 2021, DOI: 10.1007/s00158-020-02812-z
|
[5] |
Baandrup M, Sigmund O, Polk H, et al. Closing the gap towards super-long suspension bridges using computational morphogenesis. Nature Communications, 2020, 11(1): 1-7
|
[6] |
Bekas DG, Hou Y, Liu Y, et al. 3D printing to enable multifunctionality in polymer-based composites: A review. Composites Part B: Engineering, 2019, 179: 1-13
|
[7] |
Ferrari F, Sigmund O. A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D. Structural And Multidisciplinary Optimization, 2020: 2211-2228
|
[8] |
Huang X, Xie YM. A further review of ESO type methods for topology optimization. Structural and Multidisciplinary Optimization, 2010, 41(5): 671-683
|
[9] |
Wang L, Zhang H, Zhu M, et al. A new evolutionary structural optimization method and application for aided design to reinforced concrete components. Structural and Multidisciplinary Optimization, 2020, 62(5): 2599-2613
|
[10] |
Wang MY, Wang X. "Color" level sets: A multi-phase method for structural topology optimization with multiple materials. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6-8): 469-496
|
[11] |
van Dijk NP, Maute K, Langelaar M, et al. Level-set methods for structural topology optimization: A review. Structural and Multidisciplinary Optimization, 2013, 48(3): 437-472
|
[12] |
王亚光. 考虑特定制造约束的水平集拓扑优化方法. [博士论文]. 大连: 大连理工大学, 2019(Wang Yaguang. Level set topology optimization method considering manufacturing constraints. [PhD Thesis]. Dalian: Dalian University of Technology, 2019 (in Chinese))
|
[13] |
Lin Y, Zhu W, Li J, et al. Structural topology optimization using a level set method with finite difference updating scheme. Structural And Multidisciplinary Optimization, 2021, doi: https://doi.org/10.1007/s00158-020-02779-x
|
[14] |
隋允康, 彭细荣, 叶红玲 等. 互逆规划理论及其用于建立结构拓扑优化的合理模型. 力学学报, 2019, 51(6): 1940-1948(Sui Yongkang, Peng Xirong, Ye Hongling, et al. Reciprocal programming theory and its application to establish a reasonable modelof structural topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1940-1948(in Chinese))
|
[15] |
蔡守宇, 张卫红, 高彤 等. 基于固定网格和拓扑导数的结构拓扑优化自适应泡泡法. 力学学报, 2019, 51(4): 1235-1244(Cai Shouyu, Zhang Weihong, Gao Tong, et al. Adaptive bubble method using fixed mesh and topological derivative for structuraltopology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1235-1244(in Chinese))
|
[16] |
张卫红, 郭文杰, 朱继宏. 部件级多组件结构系统的整体式拓扑布局优化. 航空学报, 2015, 36(8): 2662-2669(Zhang Weihong, Guo Wenjie, Zhu Jihong. Integrated layout and topology optimization design of multi-component systems with assembly units. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2662-2669 (in Chinese))
|
[17] |
朱继宏, 高欢欢, 张卫红 等. 航天器整体式多组件结构拓扑优化设计与应用. 航空制造技术, 2014, 458(14): 26-29(Zhu Jihong, Gao Huanhuan, Zhang Weihong, et al. Design and applications of topology optimization techniques in aerospace multi-component structures. Aeronautical Manufacturing Technology, 2014, 458(14): 26-29 (in Chinese))
|
[18] |
朱继宏, 郭文杰, 张卫红 等. 多组件结构系统布局拓扑优化中处理组件干涉约束的惩罚函数方法. 航空学报, 2016, 37(12): 3721-3733(Zhu Jihong, Guo Wenjie, Zhang Weihong, et al. A penalty function-based method for dealing with overlap constraints in integrated layout and topology optimization design of multi-component systems. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3721-3733 (in Chinese))
|
[19] |
Bends?e MP, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics (Ingenieur Archiv), 1999, 69(9-10): 635-654
|
[20] |
Wang Y, Luo Z, Kang Z, et al. A multi-material level set-based topology and shape optimization method. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1570-1586
|
[21] |
王选, 胡平, 龙凯. 考虑嵌入移动孔洞的多相材料布局优化. 力学学报, 2019, 51(3): 852-862(Wang Xuan, Hu Ping, Long Kai. Multiphase material layout optimization considering embedding movable holes. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 852-862 (in Chinese))
|
[22] |
Lawry M, Maute K. Level set topology optimization of problems with sliding contact interfaces. Structural and Multidisciplinary Optimization, 2015, 52(6): 1107-1119
|
[23] |
Lawry M, Maute K. Level set shape and topology optimization of finite strain bilateral contact problems. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1340-1369
|
[24] |
Liu P, Luo Y, Kang Z. Multi-material topology optimization considering interface behavior via XFEM and level set method. Computer Methods in Applied Mechanics and Engineering, 2016, 308: 113-133
|
[25] |
Liu P, Kang Z. Integrated topology optimization of multi-component structures considering connecting interface behavior. Computer Methods in Applied Mechanics and Engineering, 2018, 341: 851-887
|
[26] |
刘湃. 考虑界面力学性能的多材料结构拓扑优化设计研究. [博士论文]. 大连: 大连理工大学, 2019(Liu Pai. Multi-material structural topology optimization considering mechanical interface behaviors. [PhD Thesis]. Dalian: Dalian University of Technology, 2019 (in Chinese))
|
[27] |
Chu S, Xiao M, Gao L, et al. Topology optimization of multi-material structures with graded interfaces. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 1096-1117
|
[28] |
Russ JB, Waisman H. Topology optimization for brittle fracture resistance. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 238-263
|
[29] |
Da D, Yvonnet J. Topology optimization for maximizing the fracture resistance of periodic quasi-brittle composites structures. Materials, 2020, 13(15): 3279
|
[30] |
Niu C, Zhang W, Gao T. Topology optimization of continuum structures for the uniformity of contact pressures. Structural and Multidisciplinary Optimization, 2019, 60(1): 185-210
|
[31] |
Svanberg K. The method of moving asymptotes-A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373
|
[32] |
周储伟, 杨卫, 方岱宁. 内聚力界面单元与复合材料的界面损伤分析. 力学学报, 1999, 31(3): 3-5(Zhou Chuwei, Yang Wei, Fang Daining. Cohesive interface element and interfacial damage analysis of composites. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 3-5 (in Chinese))
|
[33] |
Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 1999, 44(9): 1267-1282
|
[34] |
Fries TP, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253-304
|