EI、Scopus 收录
中文核心期刊

基于重要样本法的结构动力学系统的首次穿越

任丽梅, 徐伟, 肖玉柱, 王文杰

任丽梅, 徐伟, 肖玉柱, 王文杰. 基于重要样本法的结构动力学系统的首次穿越[J]. 力学学报, 2012, (3): 648-652. DOI: 10.6052/0459-1879-2012-3-20120324
引用本文: 任丽梅, 徐伟, 肖玉柱, 王文杰. 基于重要样本法的结构动力学系统的首次穿越[J]. 力学学报, 2012, (3): 648-652. DOI: 10.6052/0459-1879-2012-3-20120324
Ren Limei, Xu Wei, Xiao Yuzhu, Wang Wenjie. FIRST EXCURSION PROBABILITIES OF DYNAMICAL SYSTEMS BY IMPORTANCE SAMPLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 648-652. DOI: 10.6052/0459-1879-2012-3-20120324
Citation: Ren Limei, Xu Wei, Xiao Yuzhu, Wang Wenjie. FIRST EXCURSION PROBABILITIES OF DYNAMICAL SYSTEMS BY IMPORTANCE SAMPLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 648-652. DOI: 10.6052/0459-1879-2012-3-20120324
任丽梅, 徐伟, 肖玉柱, 王文杰. 基于重要样本法的结构动力学系统的首次穿越[J]. 力学学报, 2012, (3): 648-652. CSTR: 32045.14.0459-1879-2012-3-20120324
引用本文: 任丽梅, 徐伟, 肖玉柱, 王文杰. 基于重要样本法的结构动力学系统的首次穿越[J]. 力学学报, 2012, (3): 648-652. CSTR: 32045.14.0459-1879-2012-3-20120324
Ren Limei, Xu Wei, Xiao Yuzhu, Wang Wenjie. FIRST EXCURSION PROBABILITIES OF DYNAMICAL SYSTEMS BY IMPORTANCE SAMPLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 648-652. CSTR: 32045.14.0459-1879-2012-3-20120324
Citation: Ren Limei, Xu Wei, Xiao Yuzhu, Wang Wenjie. FIRST EXCURSION PROBABILITIES OF DYNAMICAL SYSTEMS BY IMPORTANCE SAMPLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 648-652. CSTR: 32045.14.0459-1879-2012-3-20120324

基于重要样本法的结构动力学系统的首次穿越

基金项目: 国家自然科学基金资助项目(10872165, 10932009, 11172233).
详细信息
  • 中图分类号: O324

FIRST EXCURSION PROBABILITIES OF DYNAMICAL SYSTEMS BY IMPORTANCE SAMPLING

Funds: The project was supported by the National Natural Science Foundation of China (10872165,10932009,11172233)
  • 摘要: 基于Gisranov定理, 提出一种估计稳态高斯白噪声激励的结构动力学系统首穿失效概率的重要样本法. 文章重点是构造控制函数, 控制函数促使随机响应尽量集中在样本空间中最易导致首次穿越发生的部分. 利用设计点构造控制函数, 在线性系统场合, 结合时不变系统的结构可靠性理论, 通过解有约束的优化问题得到设计点; 在非线性系统场合, 利用Heonsang Koo提出的设计点激励, 通过镜像法得到设计点. 最后给出例子, 将所提方法与原始蒙特卡罗法相比较, 模拟结果显示方法的正确性与有效性.
    Abstract: Based on the Girsanov transformation, this paper develops a method for estimating the first excursion probability of dynamical systems with stationary gauss white noise. The focus is to construct control function that concentrates on the samples paths in the “most important part” of the sample space, to achieve the purpose of variance reduction. The paper uses design point to construct control function. For linear systems, the present approach combines with the time-invariant structure reliability theory to get design points by solving the problem of the optimization. For non-linear systems, the paper uses mirror-images method to get design points. Finally the paper gives two examples. The results show the method of this paper to be correct and effective by comparing with the primitive Monte Carlo method.
  • Sun JQ, Hus CS. Cumulant-neglect closure method for nonlinear systems under random excitation. Journal of applied Mechanics, 1987, 54: 649-655  
    Socha L, Soong TT. Linearization in analysis of nonlinear stochastic systems. Applied Mechanics Reviews, 1991, 44: 399-422  
    Li Wei, Xu Wei. Stochastic optimal control of first passage failure for coupled Duffing-Van der Pol system under Gaussian white noise excitations. Chaos Solitons & Fractal, 2005, 25(5): 1221-1228  
    Li Wei, Xu Wei. First passage problem for strong nonlinear stochastic dynamical system. Chaos Solitons & Fractal, 2006, 28(2): 414-421  
    Zhu WQ, Wu YJ. First-passage time of duffing oscillator under combined harmonic and white-noise excitations. Nonlinear Dynamics, 2003, 32: 291-305  
    Newton NJ. Variance reduction for simulated diffusions. SIAM J Appl Math, 1994, 54(6): 1780-1805  
    Girsanov IV. On transforming a certain class of stochastic processes by absolutely continuous substitution. Theory Probab Appl, 1960, 5: 285-301  
    Tanaka H. An importance sampling simulation for a stochastic fatigue crack growth model. In: Proceedings of the Eighth International Conference on Applications of statistics and Probability. Sydney, Australia, 1999  
    Koo H, Der Kiureghian A, Fujimura K. Design-point excitation for non-linear random vibrations. Probabilistic Engineering Mechanics, 2005, 20: 136-147  
    Oksendal B. Stochastic Differential Equations: An Introduction with Application. 5th edn. Berlin: Springer, 1998
    Krylov N. Controlled Diffusion Processes. New York: Springer, 1980
    Macke M, Bucher C. Importance sampling for randomly excited dynamoical systems. J Sound Vibration, 2003, 268: 269-290  
    Olsen AI, Naess A. An importance sampling procedure for estimating failure probabilities of non-linear dynamic systems subjected to random noise. Int J Non-linear Mech, 2007, 42: 848-863  
    Au SK, Beck JL. First excursion probabilities for linear systems by very efficient importance sampling. Probabilistic Engineering Mechanics, 2001, 16: 193-207  
    Tanaka H. An importance sampling simulation scheme for time-dependent system reliability analyses using the Girsanov transformation. In: Proc ICOSSAR'97, 1998, 1: 411-418
    Olsen AI, Naess A. An importance sampling procedure for estimating failure probabilities of non-linear dynamic systems subjected to random noise. Int J Non-linear Mech, 2007, 42: 848-863  
    Pradlwarter HJ. Excursion probabilities of non-linear systems. Int J Non-Linear Mech, 2004, 39: 1447-1452  
    Ogawa J, Tanaka H. Importance sampling for stochastic systems under stationary noise having a specified power spectrum. Probabilistic Engineering Mechanics, 2009, 24: 537-544  
计量
  • 文章访问数:  1567
  • HTML全文浏览量:  77
  • PDF下载量:  749
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-18
  • 修回日期:  2011-12-27
  • 刊出日期:  2012-05-17

目录

    /

    返回文章
    返回