EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物芯片中周期性电渗驱动液体薄膜的流动特性

唐文跃 胡国辉

唐文跃, 胡国辉. 生物芯片中周期性电渗驱动液体薄膜的流动特性[J]. 力学学报, 2012, (3): 600-606. doi: 10.6052/0459-1879-2012-3-20120317
引用本文: 唐文跃, 胡国辉. 生物芯片中周期性电渗驱动液体薄膜的流动特性[J]. 力学学报, 2012, (3): 600-606. doi: 10.6052/0459-1879-2012-3-20120317
Tang Wenyue, Hu Guohui. FLOW CHARACTERISTICS OF LIQUID FILMS DRIVEN BY PERIODIC ELECTRO-OSMOSIS IN BIOCHIPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 600-606. doi: 10.6052/0459-1879-2012-3-20120317
Citation: Tang Wenyue, Hu Guohui. FLOW CHARACTERISTICS OF LIQUID FILMS DRIVEN BY PERIODIC ELECTRO-OSMOSIS IN BIOCHIPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 600-606. doi: 10.6052/0459-1879-2012-3-20120317

生物芯片中周期性电渗驱动液体薄膜的流动特性

doi: 10.6052/0459-1879-2012-3-20120317
基金项目: 国家自然科学基金项目(10872122), 上海市科委重大项目 (10dz2212600), 教育部博士点基金项目(20103108110004)和教育部长江 学者 创新团队项目(IRT0844) 资助.
详细信息
  • 中图分类号: O35

FLOW CHARACTERISTICS OF LIQUID FILMS DRIVEN BY PERIODIC ELECTRO-OSMOSIS IN BIOCHIPS

Funds: The project was supported by the National Natural Science Foundation of China (10872122), Science and Technology Commission of Shanghai Municipality (10dz2212600), Ph.D. Programs Foundation of Ministry of Education of China (20103108110004) andProgram for Changjiang Scholars and Innovative Research Team in University (IRT0844)
  • 摘要: 研究了二维周期性电渗驱动液体薄膜的流动特性. 以Debye-Hückel 假设近似下线性化的Poisson-Boltzmann方程描述双电层电动势分布和电荷密度的分布关系, 与黏性不可压缩流体Navier-Stokes方程相耦合, 得到流体在自由面与固壁之间的周期电渗流流场的精确解. 结果显示, 薄膜内速度振幅与流体黏性密切相关, 雷诺数越大, 速度振幅就越小. 该文还细致分析了雷诺数和自由面ζ电势对自由面的流速振幅和薄膜内速度相位差的影响.

     

  • Dutta P, Beskok A, Warburton TC. Numerical simulation of mixed electroosmotic/pressure driven micro flows. Numerical Heat Transfer Part A, 2002, 41: 131-148  
    Reuss F. Sur un nouvel effet de le electricite glavanique. Mem Soc Imp Nat Mosc, 1809, 2: 327-37
    Ghosal S. Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech, 2006, 38: 309-338  
    Park HW, Lee JS, Kim TW. Comparison of the Nernst--Planck model and the Poisson--Boltzmann model for electroosmotic flows in microchannels. J Colloid Interface Sci, 2007, 315: 731-739  
    Burgreen D, Nakache FR. Electrokinetic flow in ultrafine capillary slits. J Phys Chem, 1964, 68: 1084-1091  
    Levine S, Marriott JR, Neale G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J Colloid Interface Sci, 1975, 52: 136-149  
    Tsao HK. Electroosmotic flow through an annulus. J Colloid Interface Sci, 2000, 225: 247-250  
    Wang CY, Liu YH, Chang CC. Analytical solution of electro-osmotic flow in a semicircular microchannel. Phys Fluids, 2008, 20: 063105  
    Dutta P, Beskok A. Analytical solution of time periodic electroosmotic flows: analogies to stokes' second problem. Anal Chem, 2001, 73: 5097-5102  
    Ghosal S. Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. Journal of Fluid Mechanics, 2002, 459: 103-128
    Jian Y, Yang L, Liu Q. Time periodic electro-osmotic flow through a microannulus. Physics of Fluids, 2010, 22: 042001  
    吴健康,王贤明. 生物芯片微通道周期性电渗流特性.力学学报, 2006, 38(3): 309-315 (Wu Jiankang, Wang Xianming. Flow behavior of periodical electroosmosis in microchannel for biochips. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 309-315 (in Chinese))
    聂德明,林建忠.突扩微通道中流体电渗驱动的LBM模拟研究.力学学报, 2010, 42(5): 838-846 (Nie Deming, Lin Jianzhong. Lattice Boltzmann similation of electroosmotic flows in microchannel with a sudden expansion. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 838-846 (in Chinese))
    聂德明,林建忠,石兴.弯管电渗流场的数值模拟及研究.分析化学, 2004, 32(8): 988-992 (Nie Deming, Lin Jianzhong, Shi Xing. Numerical simulation and research on the electroosmotic flow in the curve channel. Chinese J Anal Chem, 2004, 32(8): 988-992 (in Chinese))
    Wang XM, Chen B, Wu JK. A semianalytical solution of periodical electro-osmosis in a rectangular microchannel. Phys Fluids, 2007, 19: 127101  
    Oddy MH, Antiago JG, Mikkelsen JG. Electrokinetic instability micromixing. Analytical Chemistry, 2001, 73: 5822-5832  
    Suresh V, Homsy GM. Stability of time-modulated electroosmotic flow. Physics of Fluids, 2004, 16: 2349  
    Brask A, Geranovic G, Mads J Jensen, et al. A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate--pressure characteristics and stability. Journal of Micromechanics and Microengineering, 2005, 15: 883-891  
    Ngoma GD, Erchiqui F. Pressure gradient and electroosmotic effects on two immiscible fluids in a microchannel between two parallel plates. J Micromech Microeng, 2006, 16: 83-91  
    Gao Y, Weng FN, Yang C, et al. Transient two-liquid electroosmotic flow with electric charges at the interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266: 117-128  
    Joo SM. A nonlinear study on the interfacial instabilities in electro-osmotic flows based on the Debye--Hockel approximation. Microfluidics and Nanofluidics, 2008, 5: 417-423  
    Choi W, Sharma A, Lim G, et al. Is free surface free in micro-scale electrokinetic flows. Journal of Colloid and Interface Science, 2010, 347: 153-155  
    Saville DA. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model annual. Review of Fluid Mechanics, 1997, 29: 27-64  
    Uguz AK, Ozen O, Aubry N. Electric field effect on a two-fluid interface instability in channel flow for fast electric times. Physics of Fluids, 2008, 20: 031702  
  • 加载中
计量
  • 文章访问数:  1300
  • HTML全文浏览量:  25
  • PDF下载量:  3910
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-28
  • 修回日期:  2011-09-09
  • 刊出日期:  2012-05-18

目录

    /

    返回文章
    返回