EI、Scopus 收录
中文核心期刊

饱和地基上基础动力阻抗函数的一种分析方法

陈少林, 甄澄

陈少林, 甄澄. 饱和地基上基础动力阻抗函数的一种分析方法[J]. 力学学报, 2012, 44(2): 393-400. DOI: 10.6052/0459-1879-2012-2-20120223
引用本文: 陈少林, 甄澄. 饱和地基上基础动力阻抗函数的一种分析方法[J]. 力学学报, 2012, 44(2): 393-400. DOI: 10.6052/0459-1879-2012-2-20120223
Chen Shaolin, Zhen Cheng. DYNAMIC IMPEDANCE OF FOUNDATION ON SATURATED POROELASTIC SOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 393-400. DOI: 10.6052/0459-1879-2012-2-20120223
Citation: Chen Shaolin, Zhen Cheng. DYNAMIC IMPEDANCE OF FOUNDATION ON SATURATED POROELASTIC SOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 393-400. DOI: 10.6052/0459-1879-2012-2-20120223
陈少林, 甄澄. 饱和地基上基础动力阻抗函数的一种分析方法[J]. 力学学报, 2012, 44(2): 393-400. CSTR: 32045.14.0459-1879-2012-2-20120223
引用本文: 陈少林, 甄澄. 饱和地基上基础动力阻抗函数的一种分析方法[J]. 力学学报, 2012, 44(2): 393-400. CSTR: 32045.14.0459-1879-2012-2-20120223
Chen Shaolin, Zhen Cheng. DYNAMIC IMPEDANCE OF FOUNDATION ON SATURATED POROELASTIC SOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 393-400. CSTR: 32045.14.0459-1879-2012-2-20120223
Citation: Chen Shaolin, Zhen Cheng. DYNAMIC IMPEDANCE OF FOUNDATION ON SATURATED POROELASTIC SOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 393-400. CSTR: 32045.14.0459-1879-2012-2-20120223

饱和地基上基础动力阻抗函数的一种分析方法

基金项目: 国家自然科学基金 (50978135, 51178222), 江苏省自然科学基金 (BK2008396) 和东南大学混凝土及预应力混凝土结构教育部重点实验室开放课题资助项目.
详细信息
  • 中图分类号: TU311.3

DYNAMIC IMPEDANCE OF FOUNDATION ON SATURATED POROELASTIC SOIL

Funds: The project was supported by the National Natural Science Foundation of China (50978135, 51178222), the Natural Science Foundation of Jiangsu Province (BK2008396) and Foundation of Key Laboratory of C&PC Structures.
  • 摘要: 提出了一种基础阻抗函数的时域求解方法, 并用于饱和地基情形. 通过给基础输入脉冲位移, 应用集中质量显式有限元方法结合局部透射人工边界, 得到地基施加于基础的反力时程, 然后根据阻抗函数的定义, 应用傅立叶变换求得基础阻抗函数. 通过算例, 与 Halpern 的结果进行了对比, 验证了该方法的有效性. 并以一方形基础为例, 分别讨论了泊松比、孔隙率、渗透系数和埋深对无量纲动力柔度的影响. 与以往方法相比, 该方法可以考虑复杂地基情形和不规则基础形式.
    Abstract: Based on the method of lumped-mass explicit finite element and local transmitting artificial boundary, a time domain method is presented for the computation of dynamic stiffness of rigid foundations resting on or embedded in saturated poroelastic soil. The two-phase behavior of porous medium is represented according to Biot's theory. The technique is applied to the computation of dynamic stiffness of rigid plate on a saturated poroelastic half-space. Compliance component are computed and compared with existing results. The effects of properties of porous medium and the embedded depth on the dynamic stiffness are examined. The method presented in this paper is able to represent more general properties and geometries of soil and foundation than the existing approaches do.
  • 1 Luco JE, Westmann RA. Dynamic response of circular footings. Journal of Engineering Mechanics, ASCE, 1971, 97(5): 1381-1395
    2 Veletsos AS, Wei YT. Lateral and rocking vibration of footings. Journal of Soil Mechanics and Foundation, ACSE, 1971, 97(5): 1227-1248
    3 Wong HL, Luco JE. Dynamic response of rigid foundation of arbitrarily shape. Earthquake Engineering and Structural Dynamics, 1976, 4(6): 3-16
    4 Gazetas G, Tassoulas JI. Horizontal stiffness of arbitrarily shaped embedded foundations. Journal of Geotechnical Engineering, ASCE, 1987, 113(5): 440-457  
    5 Biot MA. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12: 155-164  
    6 Halpern MR, Christiano P. Steady-state harmonic response of a rigid plate bearing on a liquid-saturated poroelastic halfspace. Earthquake engineering and structural dynamics, 1986, 14: 439-454  
    7 Kassir MK, Xu J. Interaction functions of a rigid strip bonded to saturated elastic half-space. International Journal of Solids and Structures, 1988, 24(9): 915-936  
    8 Bougacha SJ, Roesser M, Tassoulas JL. Dynamic stiffness of foundations on fluid-filled poro-elastic stratum. Journal of Engineering Mechanics, 1993, 119(8): 1649-1662  
    9 Chopra MB, Dargush GF. Boundary element analysis of stresses in an axisymmetric soil mass undergoing consolidation. Numerical and Analytical Methods in Geomechanics, 1995, 19: 195-218  
    10 Japon BR, Gallego R, Dominguez J. Dynamic stiffness of foundations on saturated poroelastic soils. Journal of Engineering Mechanics, 1997, 123(11): 1121-1129  
    11 Jin B, Liu H. Rocking vibration of rigid disk on saturated poro-elastic medium. Soil Dynamic and Earthquake Engineering, 2000, 19: 469-472  
    12 Hu XQ, Cai YQ, Wang J, et al. Rocking vibrations of a rigid embedded foundation in a poro——elastic soil layer. Soil Dynamics and Earthquake Engineering, 2010, 30: 280-284  
    13 陈少林, 廖振鹏, 陈进. 两相介质近场波动模拟的一种解耦有限元方法. 地球物理学报, 2005, 48(4): 909-917 (Chen Shaolin, Liao Zhenpeng, Chen Jin. A decoupling FEM for simulating near-field wave motions in two-phase media. Chinese J Ceophys, 2005, 48(4): 909-917 (in Chinese))
    14 陈少林, 廖振鹏. 多次透射公式在衰减波场中的实现. 地震学报, 2003, 25(3): 272-279 (Chen Shaolin, Liao Zhenpeng. Multi-transmitting formula for attenuating waves. Acta Seismologica Sinica, 2003, 25(3): 272-279 (in Chinese))
计量
  • 文章访问数:  1520
  • HTML全文浏览量:  70
  • PDF下载量:  1318
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-24
  • 修回日期:  2011-11-08
  • 刊出日期:  2012-03-17

目录

    /

    返回文章
    返回