EI、Scopus 收录
中文核心期刊
何琨, 陈坚强, 董维中. 逆向喷流流场模态分析及减阻特性研究[J]. 力学学报, 2006, 38(4): 438-445. DOI: 10.6052/0459-1879-2006-4-2005-067
引用本文: 何琨, 陈坚强, 董维中. 逆向喷流流场模态分析及减阻特性研究[J]. 力学学报, 2006, 38(4): 438-445. DOI: 10.6052/0459-1879-2006-4-2005-067
Penetration mode and drag reduction research in hypersonic flows using a counter-flow jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 438-445. DOI: 10.6052/0459-1879-2006-4-2005-067
Citation: Penetration mode and drag reduction research in hypersonic flows using a counter-flow jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 438-445. DOI: 10.6052/0459-1879-2006-4-2005-067

逆向喷流流场模态分析及减阻特性研究

Penetration mode and drag reduction research in hypersonic flows using a counter-flow jet

  • 摘要: 逆向喷流减阻的基本原理是利用逆向高速喷流与飞行器绕流的相互作用,使飞行器周围的流场结构发生变化,致使飞行器的气动特性发生改变,从而改善飞行器的气动性能.利用数值模拟方法对轴对称球头、截锥的逆向喷流流场开展了研究,考虑了高温非平衡化学反应对流场的影响. 模拟了球头和截锥在不同总压比时流场不同的模态:长穿透流模态(LPM)和短穿透流模态(SPM),得到了不同模态下钝体表面压力、气动力系数和不同模态之间转换的瞬态效应. 简单分析了喷流在减阻方面的应用,给出了几个喷口参数与减阻效率之间的关系,提出了喷流减阻工程应用时应考虑的主要因素.

     

    Abstract: More and more people believe that opposing jetscan reduce the drag, which are obtained by the interaction of high speedcounter- flow jets and bow shock. It improves the performance of aircraft byshifting the flow field (shock wave structure and boundary layer)around the aircraft, changing the physical and aerodynamiccharacteristics ofthe aircraft. The flow field over the sphere and truncated cone, withcounter-flow jets, is investigated in the present paper. It takes intoaccount theeffect of the thermo-chemical non-equilibrium in the flow field. Two steadyflow modes of a truncated cone are obtained: short penetration mode (SPM) and long penetration mode (LPM). Details of bothmodes are studied. The transient phenomena during the transition from onemode to another are also investigated. The shock bifurcation phenomenon isstudied and the relation between flow field's stability and jettotal-pressure ratio is obtained. The numerical experiment reveals acritical state for theoscillatory fluid motion. The control parameter is the stagnation pressureratio between the on-coming stream and the counter-flow jet. At a lowinjection pressure, the jet is compressed, penetrates through the bowshock and forms a multi barrel structure. When the counter-flow jet isgenerated by a sufficient high stagnation pressure, it will assume a singlebarrel structure. When the jet pressure is in the critical range, a largeamplitude oscillation will occur and the drag attains its minimum value. Theuse of counter-flow jets in drag reduction is analyzed. The main factorsin the drag reduction's efficiency are also studied.

     

/

返回文章
返回