EI、Scopus 收录
中文核心期刊
陈科, 李俊峰, 王天舒. 矩形贮箱内液体非线性晃动动力学建模与分析[J]. 力学学报, 2005, 37(3): 339-345. DOI: 10.6052/0459-1879-2005-3-2004-015
引用本文: 陈科, 李俊峰, 王天舒. 矩形贮箱内液体非线性晃动动力学建模与分析[J]. 力学学报, 2005, 37(3): 339-345. DOI: 10.6052/0459-1879-2005-3-2004-015
Nonlinear dynamics modeling and analysis of liquid sloshing in rectangle tank[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(3): 339-345. DOI: 10.6052/0459-1879-2005-3-2004-015
Citation: Nonlinear dynamics modeling and analysis of liquid sloshing in rectangle tank[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(3): 339-345. DOI: 10.6052/0459-1879-2005-3-2004-015

矩形贮箱内液体非线性晃动动力学建模与分析

Nonlinear dynamics modeling and analysis of liquid sloshing in rectangle tank

  • 摘要: 基于理想流体的假设,根据H-O原理建立了充液贮箱刚体平动与液体非线性晃动的耦合动力学方程,通过引入改进的势函数描述刚体和液体之间的动边界. 利用伽辽金方法对动力学方程进行了离散. 针对液体非线性晃动情况,与ALE有限元方法、边界元方法的结果进行了比较,验证了方法的可行性. 对刚体平动和液体非线性晃动耦合的情况,数值模拟了多种外力激励下系统的响应. 利用等效力学模型解释了耦合系统固有频率升高的现象.

     

    Abstract: Based on the assumption of the ideal fluid, the coupled dynamics equationsof movement of rigid tank and nonlinear sloshing of liquid are establishedthrough H-O principle, with the modified potential function introduced todescribe the moving boundary of rigid tank and fluid. Galerkin's method isused to discrete the equations. Benchmarked with some FEM and BEM results,feasibility of the present method is proved. The responses of the coupledsystem to the excitement by some forces are simulated. The equivalent theoryis used to explain the increase of the natural frequencies.

     

/

返回文章
返回