EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超常环境力学领域研究新进展——《力学学报》极端力学专题研讨会综述报告

姜宗林 刘俊丽 苑朝凯 陈海璇 陆夕云

姜宗林, 刘俊丽, 苑朝凯, 陈海璇, 陆夕云. 超常环境力学领域研究新进展——《力学学报》极端力学专题研讨会综述报告[J]. 力学学报, 2021, 53(2): 589-599. doi: 10.6052/0459-1879-20-442
引用本文: 姜宗林, 刘俊丽, 苑朝凯, 陈海璇, 陆夕云. 超常环境力学领域研究新进展——《力学学报》极端力学专题研讨会综述报告[J]. 力学学报, 2021, 53(2): 589-599. doi: 10.6052/0459-1879-20-442
Jiang Zonglin, Liu Junli, Yuan Chaokai, Chen Haixuan, Lu Xiyun. NEW PROGRESS IN THE FIELD OF EXTRAORDINARY ENVIRONMENTAL MECHANICS——REVIEW OF THE CHINESE JOURNAL OF THEORETICAL AND APPLIED MECHANICS SYMPOSIUM ON EXTREME MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 589-599. doi: 10.6052/0459-1879-20-442
Citation: Jiang Zonglin, Liu Junli, Yuan Chaokai, Chen Haixuan, Lu Xiyun. NEW PROGRESS IN THE FIELD OF EXTRAORDINARY ENVIRONMENTAL MECHANICS——REVIEW OF THE CHINESE JOURNAL OF THEORETICAL AND APPLIED MECHANICS SYMPOSIUM ON EXTREME MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 589-599. doi: 10.6052/0459-1879-20-442

超常环境力学领域研究新进展——《力学学报》极端力学专题研讨会综述报告

doi: 10.6052/0459-1879-20-442
基金项目: 1) 中国科学院科学出版基金中文科技期刊择优支持项目
详细信息
    作者简介:

    3) 苑朝凯, 高级工程师, 研究方向: 高超声速测量技术. E-mail: yuanck@imech.ac.cn
    2) 刘俊丽, 编审, 主要研究方向: 从事力学期刊编辑出版工作. E-mail: liujunli@cstam.org.cn;

    通讯作者:

    刘俊丽,苑朝凯

    苑朝凯

  • 中图分类号: O35

NEW PROGRESS IN THE FIELD OF EXTRAORDINARY ENVIRONMENTAL MECHANICS——REVIEW OF THE CHINESE JOURNAL OF THEORETICAL AND APPLIED MECHANICS SYMPOSIUM ON EXTREME MECHANICS

  • 摘要: 本文介绍了超常环境力学领域的相关研究背景, 综述了《力学学报》极端力学专题研讨会的学术报告与前沿问题研讨. 以极端力学关注的学科问题为视点, 聚焦深海、深空、超高温、超高速等具有国家重大需求背景的研究方向, 分别介绍了超常环境力学领域的重要成果与最新研究进展. 通过这次会议, 《力学学报》编辑部努力探索一种新的学术交流模式, 能够及时将前沿性、基础性的学术成果传递给相关领域的科研人员, 从而对相关领域的工程技术研发起到支撑作用. 本文还对会议涉及的研究领域进行总结, 期望能促进超常环境力学领域的研究与交流.

     

  • [1] 郑晓静. 关于极端力学. 力学学报, 2019,51(4):1266-1272.

    (Zheng Xiaojing. Extreme mechanics. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(4):1266-1272 (in Chinese))
    [2] Gao FP, Wang N, Zhao B. Ultimate bearing capacity of a pipeline on clayey soils: Slip-line field solution and FEM simulation. Ocean Engineering, 2013,73:159-167
    [3] 刘俊, 高福平. 近壁面柱体涡激振动的迟滞效应. 力学学报, 2019,51(6):1630-1640

    (Liu Jun, Gao Fuping. Hysteresis in vortex-induced vibrations of a near-wall cylinder. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(6):1630-1640 (in Chinese))
    [4] Gao FP. Flow-pipe-soil coupling mechanisms and predictions for submarine pipeline instability. Journal of Hydrodynamics, 2017,29(5):763-773
    [5] Shi YM, Gao FP. Lateral instability and tunnel erosion of a submarine pipeline: competition mechanism. Bulletin of Engineering Geology and the Environment, 2018,77(3):1069-1080
    [6] Tan DL, Zhou JF, Wang X. et al. Combined effects of topography and bottom friction on shoaling internal solitary waves in the South China Sea. Applied Mathematics and Mechanics, 2019,40(4):421-434
    [7] Tan DL, Zhou JF, Wang X. Fission law of solitary waves propagating over sharply variable topography. Journal of Hydrodynamics, 2020,32(4):727-734
    [8] Wang X, Zhou JF, Wang Z. et al. A numerical and experimental study of internal solitary wave loads on semi-submersible platforms. Ocean Engineering, 2018,150:298-308
    [9] Duan JL, Chen K, You YX. et al. Numerical investigation of vortex-induced vibration of a riser with internal flow. Applied Ocean Research, 2018,72:110-121
    [10] Zhang XH, Lu XB, Shi YH. et al. Study on the mechanical properties of hydrate-bearing silty clay. Marine and Petroleum Geology, 2015,67:72-80
    [11] Zhang XH, Lu XB, Chen XD. et al. Mechanism of soil stratum instability induced byhydrate dissociation. Ocean Engineering, 2016,122:74-83
    [12] Zhang XH, Lu XB, Xiao M. Gas outburst with sediments because of tetrahydrofuran hydrate dissociation. International Journal for Numerical & Analytical Methods in Geomechanics, 2015,39(17):1884-1897
    [13] 刘林, 姚仰平, 张旭辉 等. 含水合物沉积物的弹塑性本构模型. 力学学报, 2020,52(2):556-566

    (Liu Lin, Yao Yangping, Zhang Xuhui, et al. An elastoplastic constitutive model for gas hydrate-bearing sediments. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(2):556-566 (in Chinese))
    [14] 杨柳, 石富坤, 张旭辉 等. 含水合物粉质黏土压裂成缝特征实验研究. 力学学报, 2020,52(1):224-234

    (Yang Liu, Shi Fukun, Zhang Xuhui, et al. Experimental studies on the propagation characteristics of hydraulic fracture in clay hydrate sediment. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(1):224-234 (in Chinese))
    [15] Kang Q, Wang J, Duan L. et al. The volume ratio effect on flow patterns and transition processes of thermocapillary convection. Journal of Fluid Mechanics, 2019,868:560-583
    [16] Kang Q, Wu D, Duan L. et al. Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite. Physics of Fluids, 2019,31(4):044105
    [17] Kang Q, Wu D, Duan L. et al. The effects of geometry and heating rate on thermocapillary convection in the liquid bridge. Journal of Fluid Mechanics, 2019,881:951-982
    [18] Kang Q, Wu D, Duan L. et al. Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2. Physics of Fluids, 2020,32(3):034107
    [19] Zhao JF. Two-phase flow and pool boiling heat transfer in microgravity. International Journal of Multiphase Flow, 2010,36(2):135-143
    [20] 吴克, 赵建福, 李会雄. 微重力池沸腾过程中的气泡热动力学特征研究. 力学与实践, 2016,38(2):203-206

    (Wu Ke, Zhao Jianfu, Li Huixiong. Thermal dynamical behavior of vapor bubble during pool boiling in microgravity. Mechanics in Engineering. 2016,38(2):203-206 (in Chinese))
    [21] Feng Y, Li HX, Guo KK. et al. Numerical study on saturated pool boiling heat transfer in presence of a uniform electric field using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2019,135:885-896
    [22] Li ZD, Zhang L, Zhao JF. et al. Numerical simulation of bubble dynamics and heat transfer with transient thermal response of solid wall during pool boiling of FC-72. International Journal of Heat & Mass Transfer, 2015,84:409-418
    [23] 杜王芳, 赵建福. 核态池沸腾传热现象中的重力标度规律. 科学通报, 2020,65(17):9-17

    (Du Wangfang, Zhao Jianfu. Gravity scaling law of heat transfer in nucleate pool boiling. Chinese Science Bulletin. 2020,65(17):1629-1637 (in Chinese))
    [24] Li WB, Lan D, Wang YR. Exploration of Direct-Ink-Write 3D Printing in space: droplet dynamics and patterns formation in microgravity. Microgravity Science and Technology, 2020,32(5):935-940
    [25] Li WB, Ji WJ, Sun HH. et al. Pattern formation in drying sessile and pendant droplet: interactions of gravity settling, interface shrinkage, and capillary flow. Langmuir: the ACS journal of surfaces and colloids, 2019,35(1):113-119
    [26] Li WB, Ji WJ, Lan D. et al. Self-assembly of ordered microparticle monolayers from drying a droplet on a liquid substrate. The Journal of Physical Chemistry Letters, 2019,10(20):6184-6188
    [27] Li WB, Lan D, Sun HH. et al. Drop capturing based on patterned substrate in space. Langmuir: the ACS journal of surfaces and colloids, 2018,34(16):4715-4721
    [28] Ni MJ, Munipalli R, Huang P. et al. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh. Journal of Computational Physics, 2007,227(1):205-228
    [29] Chen L, Li MJ, Ni MJ. et al. MHD effects and heat transfer analysis in magneto-thermo-fluid-structure coupled field in DCLL blanket. International Communications in Heat and Mass Transfer, 2017,84:110-120
    [30] Chen L, Smolentsev S, Ni MJ. Toward full simulations for a liquid metal blanket: MHD flow computations for a PbLi blanket prototype at Ha,$sim $,10$^{4}$. Nuclear Fusion, 2020,60(7):076003
    [31] 陈松, 孙泉华. 高超声速飞行流场中的最大氧离解度分析. 力学学报, 2014,46(1):20-27

    (Chen Song, Sun Quanhua. Analysis of maximum dissociation degree of oxygen during hypersonic flight. Chinese Journal of Theoretical and Applied Mechani. 2014,46(1):20-27 (in Chinese))
    [32] 洪启臻, 王小永, 孙泉华. 高温非平衡流动中的氧分子振动态精细分析. 力学学报, 2019,51(6):1761-1774

    (Hong Qizhen, Wang Xiaoyong, Sun Quanhua. Detailed analysis of vibrational states of oxygen in high temperature non-equilibrium flows. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(6):1761-1774 (in Chinese))
    [33] Ding JC, Si T, Yang JM. et al. Measurement of a Richtmyer-Meshkov Instability at an Air-SF$_{6}$ Interface in a Semiannular Shock Tube. Physical Review Letters, 2017,119(1):014501
    [34] Si T, Long T, Zhai ZG. et al. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. Journal of Fluid Mechanics, 2015,784:225-251
    [35] 丛洲洋, 郭旭, 司廷. 反射激波诱导界面不稳定性研究进展. 中国科学: 物理学力学天文学, 2020,50(10):18-39

    (Cong Zhouyang, Guo Xu, Si Ting. Advances in interfacial instability induced by reshock. Scientia Sinica Physica, Mechanica & Astronomica, 2020,50:104703 (in Chinese))
    [36] 丁举春, 翟志刚, 司廷 等. 汇聚Richtmyer-Meshkov 不稳定性实验研究进展. 科学通报, 2018,63:618-628

    (Ding Juchun, Zhai Zhigang, Si Ting, et al. Progress in experiments of converging Richtmyer-Meshkov instability. Chinese Scencei Buletinl. 2018,63:618-628 (in Chinese))
    [37] 罗喜胜, 翟志刚, 司廷 等. 激波诱导下的气体界面不稳定性实验研究. 力学进展, 2014,44(1):201407-201407

    (Luo Xisheng, Zhai Zhigang, Si Ting, et al. Experimental study on the interfacial instability induced by shock waves. Advances in Mechanics. 2014,44(1):201407 (in Chinese))
    [38] Wang C, Han ZY, Situ M. Investigation of high-speed combustible gas ignited by a hot gas jet produced in the shock tube. Shock Waves, 2006,15(2):129-135
    [39] 司徒明, 王春, 陆惠萍. 双燃式冲压发动机中富油燃气射流的超燃研究. 推进技术, 2001,22(3):237-240

    (Situ Ming, Wang Chun, Lu Huiping. Investigation on supersonic combustion of fuel-rich hot gas as reacting jets in ramjet/scramjet combustor. Journal of Propulsion Technology. 2001,22(3):237-240 (in Chinese))
    [40] Wang C, Jiang ZL, Hu ZM. et al. Numerical investigation on the flowfield of "swallowtail" cavity for supersonic mixing enhancement. Acta Mechanica Sinica, 2009,25(1):37-44
    [41] Pan ZW, Huang SH, Su Y. et al. Strain field measurements over 3000$^circ$C using 3D-Digital image correlation. Optics and Lasers in Engineering, 2019,127:105942
    [42] Pan ZW, Huang SH, Jiang ML. In-situ measurements of deformation to fatigue failure on a flat-type divertor mockup under high heat flux loads by 3D digital image correlation. Nuclear Fusion, 2020
    [43] Huang SH, Liu SM. Numerical analysis of fatigue behavior of ITER-Like monoblock divertor interlayer under coupled heat loads. Journal of Fusion Energy, 2018,37(4):177-186
    [44] 黄生洪, 乐吴生. 一种金属表面形成微纳米多层次复合结构的加工工艺. 2017-7-17, 中国: CN201710580981. 5
    [45] 黄生洪, 郑智风. 一种超高等静压静温环境生成装置及方法. 2017-3-13, 中国: CN201710145588. 3
    [46] Luo J, Wang ZH. Analogy between vibrational and chemical nonequilibrium effects on stagnation flows. AIAA Journal, 2020,58(5):2156-2164
    [47] Wang ZH, Yu YL, Bao L. Heat transfer in nonequilibrium flows with homogeneous and heterogeneous recombination reactions. AIAA Journal, 2018,56(9):3593-3599
    [48] Yu YL, Li XD, Wang ZH. et al. Theoretical modeling of heat transfer to flat plate under vibrational excitation freestream conditions. International Journal of Heat and Mass Transfer, 2020,151:119434
    [49] Wang ZH. Generalized hypersonic equivalence principle. AIAA Journal, 2020,58(1):255-264
    [50] 李一鸣, 李祝飞, 杨基明 等. 典型高超声速内转式进气道激光散射流场显示. 航空学报, 2017,38(12):121414

    (Li Yiming, Li Zhufei, Yang Jiming, et al. Flow visulalization of a typical hypersonic inward-turning inlet using laser scattering. Acta Aeronautica et Astronautica Sinica. 2017,38(12):121414 (in Chinese))
    [51] Xiao FS, Li ZF, Zhang ZY. et al. Hypersonic shock wave interactions on a v-shaped blunt leading edge. AIAA Journal, 2018,56(1):356-367
    [52] Zhang ZY, Li ZF, Huang R. et al. Experimental investigation of shock oscillations on V-shaped blunt leading edges. Physics of Fluids, 2019,31(2):026110
    [53] Li ZF, Zhang ZY, Wang J. Pressure--heat flux correlations for shock interactions on v-shaped blunt leading edges. AIAA Journal, 2019,57(10):356-367
    [54] Wang J, Li ZF, Zhang ZY. et al. Shock interactions on v-shaped blunt leading edges with various conic crotches. AIAA Journal, 2019,58(3):1407-1411
    [55] Zhang F, Si T, Zhai ZG. et al. Reflection of cylindrical converging shock wave over a plane wedge. Physics of Fluids, 2016,28(8):086101
    [56] Wang H, Zhai ZG, Luo XS. et al. A specially curved wedge for eliminating wedge angle effect in unsteady shock reflection. Physics of Fluids, 2017,29(8):086103
    [57] Han G, Jiang Z. Approximate analytic solution of heat conduction in hollow semi-spheres flying at hypersonic speed. International Communications in Heat & Mass Transfer, 2013,43:46-52
    [58] Meng BQ, Han GL, Yuan CK. et al. Experimental and numerical study on hypersonic flow over double-wedge configuration. AIAA Journal, 2017,55(9):3227-3230
    [59] Meng BQ, Han GL, Zhang DL. et al. Aerodynamic measurement of a large aircraft model in hypersonic flow. Chinese Physics B, 2017,26(11):114702
    [60] 姜宗林, 李进平, 胡宗民 等. 高超声速飞行复现风洞理论与方法. 力学学报, 2018,50(6):1283-1291

    (Jiang Zonglin, Li Jinping, Hu Zongmin, et al. Shock tunnel theory and methods for duplicating hypersonic flight conditions. Chinese Journal of Theoretical and Applied Mechanics. 2018,50(6):1283-1291 (in Chinese))
    [61] 孟宝清, 韩桂来, 姜宗林. 结构振动对大型激波风洞气动力测量的干扰. 力学学报, 2016,48(1):102-110

    (Meng Baoqing, Han Guilai, Jiang Zonglin. Theoretical investigation on aerodynamic force measurement interfered by structural vibrations in large shock tunnel. Chinese Journal of Theoretical and Applied Mechanics. 2016,48(1):102-110 (in Chinese))
  • 加载中
计量
  • 文章访问数:  904
  • HTML全文浏览量:  87
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回