EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面粗糙度对TC4钛合金柱壳剪切带形成的影响

杨涛 刘龙飞 杨智程 胡力 卢立伟 石献坤

杨涛, 刘龙飞, 杨智程, 胡力, 卢立伟, 石献坤. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响[J]. 力学学报, 2021, 53(3): 813-822. doi: 10.6052/0459-1879-20-433
引用本文: 杨涛, 刘龙飞, 杨智程, 胡力, 卢立伟, 石献坤. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响[J]. 力学学报, 2021, 53(3): 813-822. doi: 10.6052/0459-1879-20-433
Yang Tao, Liu Longfei, Yang Zhicheng, Hu Li, Lu Liwei, Shi Xiankun. EFFECT OF SURFACE ROUGHNESS ON THE FORMATION OF SHEAR BAND IN Ti-6Al-4V ALLOY CYLINDRICAL SHELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813-822. doi: 10.6052/0459-1879-20-433
Citation: Yang Tao, Liu Longfei, Yang Zhicheng, Hu Li, Lu Liwei, Shi Xiankun. EFFECT OF SURFACE ROUGHNESS ON THE FORMATION OF SHEAR BAND IN Ti-6Al-4V ALLOY CYLINDRICAL SHELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813-822. doi: 10.6052/0459-1879-20-433

表面粗糙度对TC4钛合金柱壳剪切带形成的影响

doi: 10.6052/0459-1879-20-433
基金项目: 1) 国家自然科学基金资助项目(11772127)
详细信息
    作者简介:

    2) 刘龙飞, 教授, 主要研究方向: 材料在冲击载荷下的变形、损伤与断裂. E-mail: lfliu1@hnust.cn

    通讯作者:

    刘龙飞

  • 中图分类号: O347

EFFECT OF SURFACE ROUGHNESS ON THE FORMATION OF SHEAR BAND IN Ti-6Al-4V ALLOY CYLINDRICAL SHELL

  • 摘要: 剪切带是材料在高应变率加载条件下特有的变形和损伤形式之一,关于影响金属材料中剪切带形成的敏感性因素及其机理的研究,一直是科学研究和工程设计中关注的重点问题. 在柱壳高速坍塌过程中,剪切带优先在内表面形核, 其形核及扩展行为受内表面介观状态的影响显著.本文采用爆轰加载厚壁圆筒坍塌实验技术,结合材料表面处理技术、微结构表征技术和剪切带理论模型分析,研究了内表面粗糙度变化对TC4钛合金柱壳剪切带形成影响的细观动力学规律.结果表明, 在爆炸加载形成的高应变率条件下,表面粗糙度对TC4钛合金柱壳中剪切带形成具有明显影响. 在相同的变形条件下,随着试样内表面粗糙度的增大, 剪切带数量、长度和形核速率均增大;表面粗糙度越大, 部分剪切带扩展速率越快, 剪切带长度差异越大,剪切带的屏蔽效应增强. 分析表明,实验获得的剪切带间距与W-O模型和M模型预测结果基本吻合,具体数值受试样内表面粗糙度影响, 随着表面粗糙度的增大,实验结果逐渐小于预测数值.

     

  • [1] Dodd B, Bai Y. Adiabatic Shear Localization: Frontiers and Advances. Elsevier, 2012
    [2] Meyers MA. Dynamic Behavior of Materials. Wiley Press, 1994
    [3] Wright TW. The Physics and Mathematics of Adiabatic Shear Bands. Cambridge University Press, 2002
    [4] 董杰, 王雨田, 胡晶, 等. 非晶合金剪切带动力学行为研究. 力学学报, 2020,52(2):379-391

    (Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):379-391 (in Chinese))
    [5] 郝奇, 乔吉超, Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020,52(2):360-368

    (Hao Qi, Qiao Jichao, Jean-Marc Pelletier. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):360-368 (in Chinese))
    [6] Xue Q, Meyers MA, Nesterenko VF. Self-organization of shear bands in titanium and Ti-6Al-4V alloy. Acta Materialia, 2002,50:575-596
    [7] Bai YL. Adiabatic shear banding. Res Mechanica, 1990,31:109-119
    [8] Dai LH, Liu LF, Bai YL. Formation of adiabatic shear band in metal matrix composites. International Journal of Solids and Structures, 2004,41(22-23):5979-5993
    [9] Dai LH, Bai YL. Basic mechanical behaviors and mechanics of shear banding in BMGs. International Journal of Impact Engineering, 2008,35(8):704-716
    [10] Jiang MQ, Dai LH. Formation mechanism of lamellar chips during machining of bulk metallic glass. Acta Materialia, 2009,57(9):2730-2738
    [11] Meyers MA, Nesterenko VF, LaSalvia JC, et al. Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization. Materials Science and Engineering$:$ A, 2001,317(1-2):204-225
    [12] 刘明涛, 汤铁钢, 胡海波, 等. 不同起爆方式下炸药驱动柱壳膨胀断裂的数值模拟. 爆炸与冲击, 2014,34(4):415-420

    (Liu Mingtao, Hu haibo, et al. Numerical simulation of expansion and fracture of cylindrical shell driven by explosives in different detonation methods. Explosion and Shock Waves, 2014,34(4):415-420 (in Chinese))
    [13] 胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象. 爆炸与冲击, 2004,24(2):97-107

    (Hu Haibo, Tang Tiegang, Hu Bayi, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells. Explosion and Shock Waves, 2004,24(2):97-107 (in Chinese))
    [14] Guo Y, Ruan Q, Zhu S, et al. Temperature rise associated with adiabatic shear band: causality clarified. Physical Review Letters, 2019,122(1):015503
    [15] Timothy SP, Hutchings IM. The structure of adiabatic shear bands in a titanium alloy. Acta Metallurgica, 1985,33(4):667-676
    [16] Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. Journal of Applied Physics, 1944,15(1):22-32
    [17] Yang Y, Yang S, Jiang L. Study on the microstructural characteristics of adiabatic shear band in solid-solution treated ZK60 magnesium alloy. Materials Characterization, 2019,156:109840
    [18] 陈海华, 张先锋, 熊玮, 等. WFeNiMo 高熵合金动态力学行为及侵彻性能研究. 力学学报, 2020,52(5):1443-1453

    (Chen Haihua, Zhang Xianfeng, Xiong Wei, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1443-1453 (in Chinese))
    [19] 黄西成. 内爆与外爆加载下壳体的力学状态及破坏模式分析. [博士论文]. 绵阳: 中国工程物理研究院, 2010

    (Huang Xicheng. Analysis of Mechanical State and Failure Mode of Shell under Implosion and External Explosion. [PhD Thesis]. Mianyang: China Academy of Engineering Physics, 2010)
    [20] 朱建士, 陈裕泽. 核武器研制中的力学问题. 力学与实践, 2002(1):67-71

    (Zhu Jianshi, Chen Yuze. The mechanics of nuclear weapons development. Mechanics in Engineering, 2002(1):67-71 (in Chinese))
    [21] 杨云川, 朱建军, 郑宇, 等. 战斗部壳体爆炸破片体/线分形维数研究. 兵工学报, 2018,39(8):1499-1506

    (Yang Yunchuan, Zhu Jianjun, Zheng Yu, et al. Research on the volume and line fractal dimensions of fragments from the explosion of warhead shell. Acta Armamentari, 2018,39(8):1499-1506 (in Chinese))
    [22] Mott NF. A Theory of the Fragmentation of Shells and Bombs//Fragmentation of Rings and Shells. Berlin, Heidelberg: Springer, 2006: 243-294
    [23] 刘龙飞, 周强. 表面粗糙度对6061铝合金薄壁管冲击膨胀断裂性能的影响. 爆炸与冲击, 2018,38(4):749-758

    (Liu Longfei, Zhou Qiang. Effect of surface roughness on impact expansion fracture of 6061aluminum alloy thin-walled cylindrical tube. Explosion and Shock Waves, 2018,38(4):749-758 (in Chinese))
    [24] Meyers M, Xue Q, Nesterenko V. Evolution in the patterning of adiabatic shear bands// AIP Conference Proceedings, 2002: 567-570
    [25] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应. 爆炸与冲击, 2006,26(2):129-133

    (Tang Tiegang, Li Qingzhong, Sun Xuelin, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation. Explosion And Shock Waves, 2006,26(2):129-133 (in Chinese))
    [26] 禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究. 兵工学报, 2019,40(7):1418-1424

    (Yu Fuyou, Dong Xinlong, Yu Xinlu, et al. Experimental research on the fracture characteristics of metal cylindrical shells with different packing charges. Acta Armamentarii, 2019,40(7):1418-1424 (in Chinese))
    [27] Nesterenko VF, Lazaridi AN, Pershin SA. Localization of deformation in copper by explosive compression of hollow cylinders. Fizika Goreniya i Vzryva, 1989,25(4):154-155
    [28] Chen YJ, Meyers MA, Nesterenko VF. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. Materials Science and Engineering A, 1999,268(1-2):70-82
    [29] Lovinger Z, Rittel D, Rosenberg Z. Modeling spontaneous adiabatic shear band formation in electro-magnetically collapsing thick-walled cylinders. Mechanics of Materials, 2018,116:130-145
    [30] Nesterenko VF, Xue Q, Meyers MA. Self organization of shear bands in stainless steel: Grain size effect. Journal of Physics (IV), 2000,10:269-274
    [31] Beetle JC. SEM/1971 (Part I)//Proceedings of the Fourth Annual SEM Symposium III Research Institute. Chieago, 1971: 137-144
    [32] Xue Q, Nesterenko VF, Meyers MA. Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing. International Journal of Impact Engineering, 2003,28(3):257-280
    [33] Yang Y, Li XM, Chen SW, et al. Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy. Materials Science and Engineering A, 2010,527(20):5084-5091
    [34] 任国武, 郭昭亮, 汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究. 兵工学报, 2016,37(1):77-82

    (Ren Guowu, Guo Zhaoliang, Tang Tiegang, et al. Experimental research on fracture of metal case under loadingat high strain rate. Acta Armamentarii, 2016,37(1):77-82 (in Chinese))
    [35] Lovinger Z, Rittel D, Rosenberg Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders. Journal of the Mechanics and Physics of Solids, 2015,79:134-156
    [36] Feng H, Bassim MN. Finite element modeling of the formation of adiabatic shear bands in AISI 4340 steel. Materials Science and Engineering$:$ A, 1999,266(1-2):255-260
    [37] Meyers MA, Wang SL. An improved method for shock consolidation of powders. Acta Metallurgica, 1988,36(4):925-936
    [38] Dinzart F, Fressengeas C, Molinari A. The catastrophic development of shear localization in thermoviscoplastic materials. Le Journal de Physique IV, 1994,4(C8):C8-435-C8-440
    [39] Rittle D, Wang ZG, Dorogoy A. Geometrical imperfection and adiabatic shear banding. International Journal of Impact Engineering, 2008,35(11):1280-1292
    [40] Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. Journal of the Mechanics and Physics of Solids, 1987,35(1):95-119
    [41] Wright TW, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands. International Journal of Plasticity, 1996,12(7):927-934
    [42] Molinari A. Collective behavior and spacing of adiabatic shear bands. Journal of the Mechanics and Physics of Solids, 1997,45(9):1551-1575
  • 加载中
计量
  • 文章访问数:  440
  • HTML全文浏览量:  82
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回