[1] |
Dodd B, Bai Y. Adiabatic Shear Localization: Frontiers and Advances. Elsevier, 2012
|
[2] |
Meyers MA. Dynamic Behavior of Materials. Wiley Press, 1994
|
[3] |
Wright TW. The Physics and Mathematics of Adiabatic Shear Bands. Cambridge University Press, 2002
|
[4] |
董杰, 王雨田, 胡晶, 等. 非晶合金剪切带动力学行为研究. 力学学报, 2020,52(2):379-391(Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):379-391 (in Chinese))
|
[5] |
郝奇, 乔吉超, Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020,52(2):360-368(Hao Qi, Qiao Jichao, Jean-Marc Pelletier. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):360-368 (in Chinese))
|
[6] |
Xue Q, Meyers MA, Nesterenko VF. Self-organization of shear bands in titanium and Ti-6Al-4V alloy. Acta Materialia, 2002,50:575-596
|
[7] |
Bai YL. Adiabatic shear banding. Res Mechanica, 1990,31:109-119
|
[8] |
Dai LH, Liu LF, Bai YL. Formation of adiabatic shear band in metal matrix composites. International Journal of Solids and Structures, 2004,41(22-23):5979-5993
|
[9] |
Dai LH, Bai YL. Basic mechanical behaviors and mechanics of shear banding in BMGs. International Journal of Impact Engineering, 2008,35(8):704-716
|
[10] |
Jiang MQ, Dai LH. Formation mechanism of lamellar chips during machining of bulk metallic glass. Acta Materialia, 2009,57(9):2730-2738
|
[11] |
Meyers MA, Nesterenko VF, LaSalvia JC, et al. Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization. Materials Science and Engineering$:$ A, 2001,317(1-2):204-225
|
[12] |
刘明涛, 汤铁钢, 胡海波, 等. 不同起爆方式下炸药驱动柱壳膨胀断裂的数值模拟. 爆炸与冲击, 2014,34(4):415-420(Liu Mingtao, Hu haibo, et al. Numerical simulation of expansion and fracture of cylindrical shell driven by explosives in different detonation methods. Explosion and Shock Waves, 2014,34(4):415-420 (in Chinese))
|
[13] |
胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象. 爆炸与冲击, 2004,24(2):97-107(Hu Haibo, Tang Tiegang, Hu Bayi, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells. Explosion and Shock Waves, 2004,24(2):97-107 (in Chinese))
|
[14] |
Guo Y, Ruan Q, Zhu S, et al. Temperature rise associated with adiabatic shear band: causality clarified. Physical Review Letters, 2019,122(1):015503
|
[15] |
Timothy SP, Hutchings IM. The structure of adiabatic shear bands in a titanium alloy. Acta Metallurgica, 1985,33(4):667-676
|
[16] |
Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. Journal of Applied Physics, 1944,15(1):22-32
|
[17] |
Yang Y, Yang S, Jiang L. Study on the microstructural characteristics of adiabatic shear band in solid-solution treated ZK60 magnesium alloy. Materials Characterization, 2019,156:109840
|
[18] |
陈海华, 张先锋, 熊玮, 等. WFeNiMo 高熵合金动态力学行为及侵彻性能研究. 力学学报, 2020,52(5):1443-1453(Chen Haihua, Zhang Xianfeng, Xiong Wei, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1443-1453 (in Chinese))
|
[19] |
黄西成. 内爆与外爆加载下壳体的力学状态及破坏模式分析. [博士论文]. 绵阳: 中国工程物理研究院, 2010(Huang Xicheng. Analysis of Mechanical State and Failure Mode of Shell under Implosion and External Explosion. [PhD Thesis]. Mianyang: China Academy of Engineering Physics, 2010)
|
[20] |
朱建士, 陈裕泽. 核武器研制中的力学问题. 力学与实践, 2002(1):67-71(Zhu Jianshi, Chen Yuze. The mechanics of nuclear weapons development. Mechanics in Engineering, 2002(1):67-71 (in Chinese))
|
[21] |
杨云川, 朱建军, 郑宇, 等. 战斗部壳体爆炸破片体/线分形维数研究. 兵工学报, 2018,39(8):1499-1506(Yang Yunchuan, Zhu Jianjun, Zheng Yu, et al. Research on the volume and line fractal dimensions of fragments from the explosion of warhead shell. Acta Armamentari, 2018,39(8):1499-1506 (in Chinese))
|
[22] |
Mott NF. A Theory of the Fragmentation of Shells and Bombs//Fragmentation of Rings and Shells. Berlin, Heidelberg: Springer, 2006: 243-294
|
[23] |
刘龙飞, 周强. 表面粗糙度对6061铝合金薄壁管冲击膨胀断裂性能的影响. 爆炸与冲击, 2018,38(4):749-758(Liu Longfei, Zhou Qiang. Effect of surface roughness on impact expansion fracture of 6061aluminum alloy thin-walled cylindrical tube. Explosion and Shock Waves, 2018,38(4):749-758 (in Chinese))
|
[24] |
Meyers M, Xue Q, Nesterenko V. Evolution in the patterning of adiabatic shear bands// AIP Conference Proceedings, 2002: 567-570
|
[25] |
汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应. 爆炸与冲击, 2006,26(2):129-133(Tang Tiegang, Li Qingzhong, Sun Xuelin, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation. Explosion And Shock Waves, 2006,26(2):129-133 (in Chinese))
|
[26] |
禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究. 兵工学报, 2019,40(7):1418-1424(Yu Fuyou, Dong Xinlong, Yu Xinlu, et al. Experimental research on the fracture characteristics of metal cylindrical shells with different packing charges. Acta Armamentarii, 2019,40(7):1418-1424 (in Chinese))
|
[27] |
Nesterenko VF, Lazaridi AN, Pershin SA. Localization of deformation in copper by explosive compression of hollow cylinders. Fizika Goreniya i Vzryva, 1989,25(4):154-155
|
[28] |
Chen YJ, Meyers MA, Nesterenko VF. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. Materials Science and Engineering A, 1999,268(1-2):70-82
|
[29] |
Lovinger Z, Rittel D, Rosenberg Z. Modeling spontaneous adiabatic shear band formation in electro-magnetically collapsing thick-walled cylinders. Mechanics of Materials, 2018,116:130-145
|
[30] |
Nesterenko VF, Xue Q, Meyers MA. Self organization of shear bands in stainless steel: Grain size effect. Journal of Physics (IV), 2000,10:269-274
|
[31] |
Beetle JC. SEM/1971 (Part I)//Proceedings of the Fourth Annual SEM Symposium III Research Institute. Chieago, 1971: 137-144
|
[32] |
Xue Q, Nesterenko VF, Meyers MA. Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing. International Journal of Impact Engineering, 2003,28(3):257-280
|
[33] |
Yang Y, Li XM, Chen SW, et al. Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy. Materials Science and Engineering A, 2010,527(20):5084-5091
|
[34] |
任国武, 郭昭亮, 汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究. 兵工学报, 2016,37(1):77-82(Ren Guowu, Guo Zhaoliang, Tang Tiegang, et al. Experimental research on fracture of metal case under loadingat high strain rate. Acta Armamentarii, 2016,37(1):77-82 (in Chinese))
|
[35] |
Lovinger Z, Rittel D, Rosenberg Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders. Journal of the Mechanics and Physics of Solids, 2015,79:134-156
|
[36] |
Feng H, Bassim MN. Finite element modeling of the formation of adiabatic shear bands in AISI 4340 steel. Materials Science and Engineering$:$ A, 1999,266(1-2):255-260
|
[37] |
Meyers MA, Wang SL. An improved method for shock consolidation of powders. Acta Metallurgica, 1988,36(4):925-936
|
[38] |
Dinzart F, Fressengeas C, Molinari A. The catastrophic development of shear localization in thermoviscoplastic materials. Le Journal de Physique IV, 1994,4(C8):C8-435-C8-440
|
[39] |
Rittle D, Wang ZG, Dorogoy A. Geometrical imperfection and adiabatic shear banding. International Journal of Impact Engineering, 2008,35(11):1280-1292
|
[40] |
Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. Journal of the Mechanics and Physics of Solids, 1987,35(1):95-119
|
[41] |
Wright TW, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands. International Journal of Plasticity, 1996,12(7):927-934
|
[42] |
Molinari A. Collective behavior and spacing of adiabatic shear bands. Journal of the Mechanics and Physics of Solids, 1997,45(9):1551-1575
|