EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪作用下柔性草本植物受力特性研究

张小霞 林鹏智

张小霞, 林鹏智. 波浪作用下柔性草本植物受力特性研究[J]. 力学学报, 2021, 53(4): 1018-1027. doi: 10.6052/0459-1879-20-429
引用本文: 张小霞, 林鹏智. 波浪作用下柔性草本植物受力特性研究[J]. 力学学报, 2021, 53(4): 1018-1027. doi: 10.6052/0459-1879-20-429
Zhang Xiaoxia, Lin Pengzhi. WAVE-INDUCED FORCE ON FLEXIBLE MARSH PLANTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1018-1027. doi: 10.6052/0459-1879-20-429
Citation: Zhang Xiaoxia, Lin Pengzhi. WAVE-INDUCED FORCE ON FLEXIBLE MARSH PLANTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1018-1027. doi: 10.6052/0459-1879-20-429

波浪作用下柔性草本植物受力特性研究

doi: 10.6052/0459-1879-20-429
基金项目: 1)国家自然科学基金(51879237)
详细信息
    作者简介:

    3)林鹏智, 教授, 主要研究方向: 计算流体动力学及其工程应用. E-mail: cvelinpz@scu.edu.cn
    2)张小霞, 博士, 主要研究方向: 环境流体力学及生态减灾. E-mail: zhangxiaoxia@stu.scu.edu.cn;

    通讯作者:

    张小霞

    林鹏智

  • 中图分类号: TV1

WAVE-INDUCED FORCE ON FLEXIBLE MARSH PLANTS

  • 摘要: 草本盐沼植物广泛分布于海岸带形成滨海湿地系统, 这些滨海湿地具有生态、旅游、养殖及减灾等多方面价值. 草本植物的消浪作用在海岸稳固和沿海防灾减灾等方面发挥了重要作用. 已有植物消浪研究通常过度简化, 将植物视为刚性圆柱并依赖于调节经验拖曳力系数来提高预测准确度, 对柔性植物与波浪的相互作用机理研究还很欠缺. 草本植物通常由多片柔性叶片和一根柔性相对较小的杆茎组成. 在波浪作用下, 植物的叶片与杆茎产生不同程度的动态变形以及相互作用, 从而改变波浪与植物间的相对运动速度, 使得柔性植物受力特性十分复杂. 本文采用简单柔性结构物受力尺度定律计算单片叶片和单根杆茎受力, 并用遮蔽系数量化叶片与杆茎间相互作用引起的叶片受力降低程度, 提出了波浪作用下柔性草本植物动态受力计算公式. 与单片叶片、单根杆茎和既有叶片又有杆茎的模型植物及真实植物样本测量受力比较表明, 本文提出的植物受力模型可较好地预测植物最大受力及植物受力随波浪周期的变化情况.

     

  • [1] 贺强, 安渊, 崔保山. 滨海盐沼及其植物群落的分布与多样性. 生态环境学报, 2010,19(3):657-664

    (He Qiang, An Yuan, Cui Baoshan. Coastal salt marshes and distribution and diversity of salt marsh plant communities. Ecology and Environmental Sciences, 2010,19(3):657-664 (in Chinese))
    [2] Mcleod E, Chmura GL, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO$_2$. Frontiers in Ecology and the Environment, 2011,9(10):552-560
    [3] 张小霞, 陈新平, 米硕 等. 我国生物海岸修复现状及展望. 海洋通报, 2020,39(1):1-11

    (Zhang Xiaoxia, Chen Xinping, Mi Shou, et al. Rehabilitation of biological coasts of China. Marine Science Bulletin, 2020,39(1):1-11 (in Chinese))
    [4] Lotze HK. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 2006,312(5781):1806-1809
    [5] 张乔民, 隋淑珍. 中国红树林湿地资源及其保护. 自然资源学报, 2001,16(1):28-36

    (Zhang Qiaomin, Sui Shuzhen. The mangrove wetland resources and their conservation in China. Journal of Natural Resources, 2001,16(1):28-36 (in Chinese))
    [6] 蒋昌波, 郑睿, 陈杰 等. 海啸波作用下植被区海堤局部冲刷试验. 水利水电科技进展, 2019,39(6):24-30, 74

    (Jiang Changbo, Zheng Rui, Chen Jie, et al. Experimental study on local scour of a seawall in vegetation area under tsunami waves. Advances in Science and Technology of Water Resources, 2019,39(6):24-30, 74 (in Chinese))
    [7] 李华, 杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展. 地球科学进展, 2007(6):583-591

    (Li Hua, Yang Shilun. A review of influences of saltmarsh vegetation on physical processes in intertidal wetlands. Advances in Earth Science, 2007(6):583-591 (in Chinese))
    [8] Shi BW, Pratolongo PD, Du YF, et al. Influence of macrobenthos (meretrix meretrix linnaeus) on erosion-accretion processes in intertidal flats: A case study from a cultivation zone. Journal of Geophysical Research$:$ Biogeosciences, 2020, 125(1): e2019JG005345
    [9] Barbier EB, Hacker SD, Kennedy C, et al. The value of estuarine and coastal ecosystem services. Ecological Monographs, 2011,81(2):169-193
    [10] Arkema KK, Griffin R, Maldonado S, et al. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities: Advancing protection for coastal communities. Ann NY Acad Sci, 2017,1399(1):5-26
    [11] 吉红香. 植物消浪护岸试验研究. [博士论文]. 乌鲁木齐: 新疆农业大学, 2005

    (Ji Hongxiang. Experiment research on damping waves for vegetation embankment. [PhD Thesis]. Urumchi: Xinjiang Agricultural University, 2005 (in Chinese))
    [12] 白玉川, 杨建民, 胡嵋 等. 植物消浪护岸模型实验研究. 海洋工程, 2005,23(3):65-69

    (Bai Yuchuan, Yang Jianmin, Hu Mei, et al. A model test of vegetation on the bank to attenuate waves and protect embankments. The Ocean Engineering, 2005,23(3):65-69 (in Chinese))
    [13] Gedan KB, Kirwan ML, Wolanski E, et al. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change, 2011,106(1):7-29
    [14] M?ller I, Kudella M, Rupprecht F, et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geosci, 2014,7(10):727-731
    [15] Yang SL, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls. Estuarine, Coastal and Shelf Science, 2008,77(4):657-671
    [16] Yang SL, Shi BW, Bouma TJ, et al. Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary. Estuaries and Coasts, 2012,35(1):169-182
    [17] 何飞, 陈杰, 蒋昌波 等. 考虑根茎叶影响的刚性植物消浪特性实验研究. 水动力学研究与进展A辑, 2017,32(6):116-124

    (He Fei, Chen Jie, Jiang Changbo, et al. Experimental investigation on wave attenuation under the effects of rigid vegetation with root, stem and crown. Chinese Journal of Hydrodynamics $($A$)$, 2017,32(6):116-124 (in Chinese))
    [18] Tinoco RO, San JJE, Mullarney JC. Simplification bias: lessons from laboratory and field experiments on flow through aquatic vegetation. Earth Surf Process Landforms, 2020,45(1):121-143
    [19] 吴福生. 柔性植物阻流特性研究. 水利学报, 2007(S1):283-287

    (Wu Fusheng. Flow resistance of flexible vegetation in open channel. Journal of Hydraulic Engineering, 2007(S1):283-287 (in Chinese))
    [20] Morison JR, Johnson JW, Schaaf SA. The force exerted by surface waves on piles. Journal of Petroleum Technology, 1950,2(5):149-154
    [21] Keulegan GH, Carpenter LH. Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stan, 1958,60(5):423
    [22] Mullarney JC, Henderson SM. Wave-forced motion of submerged single-stem vegetation. J Geophys Res, 2010,115(C12):C12061
    [23] Luhar M, Nepf H. Wave induced dynamics of flexible blades. Journal of Fluids and Structures, 2016,61:20-41
    [24] Lei JR, Nepf H. Wave damping by flexible vegetation: Connecting individual blade dynamics to the meadow scale. Coastal Engineering, 2019,147:138-148
    [25] Zhu LH, Zou QP, Huguenard K, et al. Mechanisms for the asymmetric motion of submerged aquatic vegetation in waves: A consistent-mass cable model. J Geophys Res Oceans, 2020,125(2). Doi: 10.1029/2019JC015517
    [26] Luhar M, Infantes E, Nepf H. Seagrass blade motion under waves and its impact on wave decay. J Geophys Res Oceans, 2017,122(5):3736-3752
    [27] 陈杰, 何飞, 蒋昌波 等. 植物消波机制的实验与理论解析研究进展. 水科学进展, 2018,29(3):433-445

    (Chen Jie, He Fei, Jiang Changbo, et al. Advances in laboratory experiment, theoretical analysis of mechanism of wave attenuation by vegetation. Advances in Water Science, 2018,29(3):433-445 (in Chinese))
    [28] Zhang XX, Nepf H. Wave-induced reconfiguration of and drag on marsh plants. Journal of Fluids and Structures, 2021,100:103192
    [29] Méndez FJ, Losada IJ, Losada MA. Hydrodynamics induced by wind waves in a vegetation field. J Geophys Res, 1999,104(C8):18383-18396
    [30] Zeller RB, Weitzman JS, Abbett ME, et al. Improved parameterization of seagrass blade dynamics and wave attenuation based on numerical and laboratory experiments. Limnol Oceanogr, 2014,59(1):251-266
    [31] Luhar M, Nepf H. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol Oceanogr, 2011,56(6):2003-2017
    [32] Gosselin F, de Langre E, Machado-Almeida BA. Drag reduction of flexible plates by reconfiguration. J Fluid Mech, 2010,650:319-341
    [33] Zhang XX, Nepf H. Wave-induced Reconfiguration of and Drag on Marsh Plants. Journal of Fluids and Structures 2020. doi: 10.1076/j.jfluidstructures2020.103192
    [34] 张小霞. 波浪作用下草本植物变形、受力及消浪特性研究. [博士论文]. 成都: 四川大学, 2020

    (Zhang Xiaoxia. Wave damping by marsh plants considering the reconfiguration of and drag on plants. [PhD Thesis]. Chengdu: Sichuan University, 2020 (in Chinese))
    [35] 涂佳黄, 谭潇玲, 杨枝龙 等. 上游静止方柱尾流对下游方柱体尾激振动效应影响. 力学学报, 2019,51(5):1321-1335

    (Tu Jiahuang, Tan Xiaoling, Yang Zhilong, et al. Effect of wake induced-vibration responses of a square cylinder behind the stationary square cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1321-1335 (in Chinese))
    [36] 杨明, 刘巨保, 岳欠杯 等. 涡激诱导并列双圆柱碰撞数值模拟研究. 力学学报, 2019,51(6):1785-1796

    (Yang Ming, Liu Jubao, Yue Qianbei, et al. Numerical simulation on the vortex-induced collision of two side-by-side cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1785-1796 (in Chinese))
    [37] Lei JR, Nepf H. Blade dynamics in combined waves and current. Journal of Fluids and Structures, 2019,87:137-149
    [38] 徐万海, 马烨璇, 罗浩 等. 柔性圆柱涡激振动流体力系数识别及其特性. 力学学报, 2017,49(4):818-827

    (Xu Wanhai, Ma Yexuan, Luo Hao, et al. Identification and characteristics of hydrodynamic coe_cients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):818-827 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  276
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回