EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维与二维爆轰传播的时空关联特性数值研究

张文硕 杨鹏飞 姜宗林 刘云峰

张文硕, 杨鹏飞, 姜宗林, 刘云峰. 一维与二维爆轰传播的时空关联特性数值研究. 力学学报, 2021, 53(7): 2069-2078 doi: 10.6052/0459-1879-20-411
引用本文: 张文硕, 杨鹏飞, 姜宗林, 刘云峰. 一维与二维爆轰传播的时空关联特性数值研究. 力学学报, 2021, 53(7): 2069-2078 doi: 10.6052/0459-1879-20-411
Zhang Wenshuo, Yang Pengfei, Jiang Zonglin, Liu Yunfeng. Numerical investigation on the space-time correlation between oblique detonation and normal detonation propagation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2069-2078 doi: 10.6052/0459-1879-20-411
Citation: Zhang Wenshuo, Yang Pengfei, Jiang Zonglin, Liu Yunfeng. Numerical investigation on the space-time correlation between oblique detonation and normal detonation propagation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2069-2078 doi: 10.6052/0459-1879-20-411

一维与二维爆轰传播的时空关联特性数值研究

doi: 10.6052/0459-1879-20-411
基金项目: 国家自然科学基金资助项目(11532014)
详细信息
    作者简介:

    姜宗林, 研究员, 主要研究方向: 流体力学, 激波与爆轰物理. E-mail: zljiang@imech.ac.cn

  • 中图分类号: O381

NUMERICAL INVESTIGATION ON THE SPACE-TIME CORRELATION BETWEEN OBLIQUE DETONATION AND NORMAL DETONATION PROPAGATION

Funds: The project was supported by the National Natural Science Foundation of China(11532014)
  • 摘要: 一维爆轰传播的理论完备、计算准确, 二维斜爆轰传播由于壁面与黏性效应, 大尺度、高精度预测还有一定难度. 利用Euler方程和H2-Air基元反应模型, 对二维有限长楔面诱导的斜爆轰和活塞驱动一维非定常正爆轰进行计算比较研究, 从时空两个维度方面, 分析了两者在起爆过程、稀疏波传播、爆轰波面演化中的关联特性. 研究结果表明: 在过驱动度相同的条件下, 经过时空变换的活塞驱动一维爆轰传播与二维驻定斜爆轰在起爆区波系结构、波面演化特征和主要参数分布规律方面无论定性或者定量对比均符合较好, 所以, 一维非定常爆轰和二维驻定斜爆轰具有时空相关性. 两者的差异主要体现在过驱动斜爆轰受稀疏波影响过渡到近Chapman-Jouguet (C-J)爆轰状态所需的弛豫时间不同, 原因可能是起源于活塞和壁面稀疏波强度的差异. 本文提出的一维与二维爆轰传播的时空关联方法不仅有助于认知斜爆轰起爆、过驱爆轰产生、胞格爆轰演化的三阶段规律, 还可以对比揭示壁面、边界层和黏性效应的影响, 应用在斜爆轰发动机燃烧室设计中能够有效节约计算时间和成本, 并降低复杂度.

     

  • 图  1  典型一维爆轰波的数值模拟结果

    Figure  1.  Typical pressure profile of one-dimensional detonation in the numerical simulation

    图  2  半无限长楔面数值模拟的爆轰角与爆轰极曲线对比

    Figure  2.  Detonation angle of numerical simulation vs. detonation polar diagram

    图  3  计算模型示意图

    Figure  3.  Schematic diagram of numerical model

    4  不同工况下压力及温度的数值模拟云图

    4.  Numerical contours of pressure and temperature under different conditions

    图  4  不同工况下压力及温度的数值模拟云图(续)

    Figure  4.  Numerical contours of pressure and temperature under different conditions (continue)

    图  5  壁面压力、温度变化

    Figure  5.  Wall pressure and temperature profiles

    图  6  压力、温度波形变化

    Figure  6.  Variation of pressure and temperature profile

    图  7  有限长楔面上的斜激波角的变化

    Figure  7.  Variation of oblique shock wave angle over finite wedge

    图  8  近Chapman-Jouguet斜爆轰波的定量定义

    Figure  8.  Quantitative definition of near Chapman-Jouguet oblique detonation wave

    表  1  半无限长楔面数值模拟的爆轰角与爆轰极曲线对比

    Table  1.   Detonation angle of numerical simulation vs. that of detonation polar diagram under various wedge angles

    θ/(°)βtheory/(°)βnum/(°)Er/%
    1543.8644.120.59
    1644.0044.330.75
    1744.2744.480.47
    1844.6344.780.34
    1945.0945.250.35
    2347.6747.770.21
    2549.3549.520.34
    2852.3552.660.59
    3156.0556.360.55
    3461.0061.651.07
    下载: 导出CSV

    表  2  爆轰波各发展阶段的时间尺度

    Table  2.   Time duration of different stages in the development of detonation wave

    Stagetwedge/μstpiston/μs
    t12.872.58
    t25.652.72
    t35.8213.50
    t425.3875.14
    下载: 导出CSV
  • [1] 范宝春. 极度燃烧. 北京: 国防工业出版社, 2018: 279-280

    (Fan Baochun. Extreme Combustion. Beijing: National Defense Industry Press, 2018: 279-280(in Chinese))
    [2] Oran ES. Understanding explosions—From catastrophic accidents to creation of the universe. Proceedings of the Combustion Institute, 2015, 35(1): 1-35 doi: 10.1016/j.proci.2014.08.019
    [3] Poludnenko AY, Chambers J, Ahmed K, et al. A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae. Science, 2019, 366(6465): eaau7365
    [4] 范宝春, 张旭东, 潘振华等. 用于推进的三种爆轰波的结构特征. 力学进展, 2012, 42(2): 162-169 (Fan Baochun, Zhang Xudong, Pan Zhenhua, et al. Fundamental characteristics of three types of detonation waves utilized in propulsion. Advances in Mechanics, 2012, 42(2): 162-169 (in Chinese)
    [5] 姜宗林. 气体爆轰物理及其统一框架理论. 北京: 科学出版社, 2020

    (Jiang Zonglin. Gaseous Detonation Physics and Its Universal Framework Theory. Beijing: Science Press, 2020(in Chinese))
    [6] Li C, Kailasanath K, Oran E.S Detonation structures behind oblique shocks. Physics of Fluids, 1994, 6(4): 1600-1611 doi: 10.1063/1.868273
    [7] Fugueira da Silva LF, Deshaies B. Stabilization of an oblique detonation wave by a wedge: A parametric numerical study. Combustion and Flame, 2000, 121(1-2): 152-166 doi: 10.1016/S0010-2180(99)00141-8
    [8] Teng HH, Jiang ZL. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 2012, 713: 659-669
    [9] Choi JY, Kim DW, Jeung IS, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute, 2007, 31(2): 2473-2480 doi: 10.1016/j.proci.2006.07.173
    [10] Gui MY, Fan BC, Dong G. Periodic oscillation and fine structure of wedge-induced oblique detonation waves. Acta Mechanica Sinica, 2011, 27(6): 922-928 doi: 10.1007/s10409-011-0508-y
    [11] Teng HH, Ng HD, Li K, et al. Evolution of cellular structures on oblique detonation surfaces. Combustion and Flame, 2015, 162(2): 470-477 doi: 10.1016/j.combustflame.2014.07.021
    [12] Fusina G, Sislian JP, Parent B. Formation and stability of near Chapman-Jouguet standing oblique detonation waves. AIAA Journal, 2005, 43(7): 1591-1604 doi: 10.2514/1.9128
    [13] Yang PF, Ng HD, Teng HH. Numerical study of wedge-induced oblique detonations in unsteady flow. Journal of Fluid Mechanics, 2019, 876: 264-287 doi: 10.1017/jfm.2019.542
    [14] Ghorbanian K, Sterling JD. Influence of formation processes on oblique detonation wave stabilization. Journal of Propulsion and Power, 2015, 12(3): 509-517
    [15] Daimon Y, Matsuo A. Analogy between wedge-induced steady oblique detonation and one-dimensional piston-supported unsteady detonation. Science and Technology of Energetic Materials, 2004, 65(4): 111-115
    [16] Higgins AJ. Ram accelerators: Outstanding issues and new directions. Journal of Propulsion and Power, 2006, 22(6): 1170-1187
    [17] 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展. 力学进展, 2020, 50: 202000 (Teng Honghui, Jiang Zonglin. Progress in multi-wave structure and stability of oblique detonations. Advances in Mechanics, 2020, 50: 202000 (in Chinese)
    [18] Dong G, Fan BC. Chemistry acceleration modeling of detonation based on the dynamical storage/deletion algorithm. Combustion Science and Technology, 2009, 181(9): 1207-1216 doi: 10.1080/00102200903181744
    [19] 武丹, 王健平. 黏性及热传导对于爆轰波的影响. 应用力学学报, 2012, 29(6): 630-635,769 (Wu Dan, Wang Jianping. Influences of viscosity and thermal conductivity on detonation waves. Chinese Journal of Applied Mechanics, 2012, 29(6): 630-635,769 (in Chinese) doi: 10.11776/cjam.29.06.D002
    [20] McBride BJ, Gordon S, Reno MA. Coefficients for calculating thermodynamic and transport properties of individual species. NASA, 1993: TM-4513
    [21] Wilson GJ, MacCormack RW. Modeling supersonic combustion using a fully implicit numerical method. AIAA Journal, 1992, 30(4): 1008-1015 doi: 10.2514/3.11021
    [22] Toro EF. Rieman Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Berlan: Springer Science & Business Media, 2013
    [23] Jiang ZL. On dispersion-controlled principles for non-oscillatory shock-capturing schemes. Acta Mechanica Sinica, 2004, 20(1): 1-15 doi: 10.1007/BF02493566
    [24] 张子健, 刘云峰, 姜宗林. 一种化学反应平衡流激波关系的求解方法//北京力学会第二十三届学术年会, 北京, 2017

    (Zhang Zijian, Liu Yunfeng, Jiang Zonglin. A method for solving shock wave relation in equilibrium flow of chemical reaction//The 23rd Annual Academic Meeting of Beijing Society of Theoretical and Applied Mechanics, Beijing, 2017(in Chinese))
    [25] Uy KCK, Shi LS, Wen CY. Numerical analysis of the vibration-chemistry coupling effect on one-dimensional detonation stability. Aerospace Science and Technology, 2020, 107: 106327 doi: 10.1016/j.ast.2020.106327
    [26] Teng HH, Tian C, Zhang YN, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture. Journal of Fluid Mechanics, 2021: 913
    [27] Xiang GX, Li XD, Sun XF, et al. Investigations on oblique detonations induced by a finite wedge in high altitude. Aerospace Science and Technology, 2019, 95: 105451 doi: 10.1016/j.ast.2019.105451
    [28] Li GX, Zhang GQ, Zhang YH, et al. Influence of viscous boundary layer on initiation zone structure of two-dimensional oblique detonation wave. Aerospace Science and Technology, 2020, 104: 106019 doi: 10.1016/j.ast.2020.106019
    [29] 王爱峰, 滕宏辉, 赵伟等. 边界层对驻定斜爆轰结构和稳定性的影响. 科学技术与工程, 2013, 13(23): 6781-6787 (Wang Aifeng, Teng Honghui, Zhao Wei, et al. Boundary layer effect on the structure and stability of standing ODW. Science Technology and Engineering, 2013, 13(23): 6781-6787 (in Chinese) doi: 10.3969/j.issn.1671-1815.2013.23.023
    [30] Teng HH, Ng HD, Jiang ZL. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proceedings of the Combustion Institute, 2017, 36(2): 2735-2742 doi: 10.1016/j.proci.2016.09.025
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  54
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 录用日期:  2021-05-21
  • 网络出版日期:  2021-05-24
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回