EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同壁面取向下超疏水平面直轨道上的气泡滑移

叶煜航 凃程旭 包福兵 汪钰锟 杨森森

叶煜航, 凃程旭, 包福兵, 汪钰锟, 杨森森. 不同壁面取向下超疏水平面直轨道上的气泡滑移[J]. 力学学报, 2021, 53(4): 962-972. doi: 10.6052/0459-1879-20-405
引用本文: 叶煜航, 凃程旭, 包福兵, 汪钰锟, 杨森森. 不同壁面取向下超疏水平面直轨道上的气泡滑移[J]. 力学学报, 2021, 53(4): 962-972. doi: 10.6052/0459-1879-20-405
Ye Yuhang, Tu Chengxu, Bao Fubing, Wang Yukun, Yang Sensen. BUBBLE SLIPPING ON A SUPERHYDROPHOBIC PLANAR STRAIGHT TRAJECTORY UNDER DIFFERENT SURFACE ORIENTATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 962-972. doi: 10.6052/0459-1879-20-405
Citation: Ye Yuhang, Tu Chengxu, Bao Fubing, Wang Yukun, Yang Sensen. BUBBLE SLIPPING ON A SUPERHYDROPHOBIC PLANAR STRAIGHT TRAJECTORY UNDER DIFFERENT SURFACE ORIENTATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 962-972. doi: 10.6052/0459-1879-20-405

不同壁面取向下超疏水平面直轨道上的气泡滑移

doi: 10.6052/0459-1879-20-405
基金项目: 1)国家重点研发(2017YFB0603701);国家自然科学基金(11972334);国家自然科学基金(11672284)
详细信息
    作者简介:

    2)凃程旭,副教授,主要研究方向:多相流. E-mail: tuchengxu@cjlu.edu.cn

    通讯作者:

    凃程旭

  • 中图分类号: O359

BUBBLE SLIPPING ON A SUPERHYDROPHOBIC PLANAR STRAIGHT TRAJECTORY UNDER DIFFERENT SURFACE ORIENTATIONS

  • 摘要: 利用特定几何分布的超疏水表面实现气泡定向输运在矿物浮选和生物孵化等领域具有广阔的应用前景, 对平面直线超疏水轨道而言, 其壁面取向是相关工程结构的关键参数, 但超疏水壁面取向对倾斜壁面气泡滑移的影响尚不明确. 本文采用高速阴影成像系统研究了不同壁面取向($-90^\circ\leqslant \beta \leqslant 90^\circ$)及轨道倾角($45^\circ\leqslant \alpha \leqslant 75^\circ$)下, 气泡($D_{eq}=2.4$ mm, $Re=500$ $\sim$ 700, $We=7$ $\sim$ 13)在轨道宽度为2 mm的超疏水直线轨道上的运动特性. 气泡在轨道上的滑移近似为匀速, 形状为具有多脊的半子弹型. 根据气液界面波动程度的不同, 滑移气泡可分为波动型和稳定型, 稳定型气泡只在较小倾角且较大方位角时出现($45^\circ\leqslant \alpha < 70^\circ$, $| \beta | \geqslant 45^\circ$). 根据倾角不同, 滑移速度关于$\beta $有2种变化规律: 当$\alpha \leqslant 65^\circ$, 气泡滑移速度近似为关于$\beta =0^\circ$ 的单峰分布($\beta =0^\circ$时, 气泡滑移速度最大); 当$\alpha \geqslant 70^\circ$, 气泡滑移速度在不同的方位角下基本保持稳定. 气泡的最大滑移速度可达0.66 m/s ($\beta =0^\circ$, $\alpha =70^\circ$), 远大于相同尺度的自由上升气泡($\approx0.25$ m/s), 这主要是壁面浸润性分布和惯性力的耦合效应所致. 轨道取向(方位角$\beta )$及轨道倾角($\alpha )$通过改变气泡沿轨道方向的驱动力和气泡迎风面积影响气泡的滑移速度和气液界面稳定性.

     

  • [1] Xie YL, Zhao CL. An optothermally generated surface bubble and its applications. Nanoscale, 2017,9(20):6622-6631
    [2] Wang G, Nguyen AV, Mitra S, et al. A review of the mechanisms and models of bubble-particle detachment in froth flotation. Separation and Purification Technology, 2016,170:155-172
    [3] Vogt H, Balzer R. The bubble coverage of gas-evolving electrodes in stagnant electrolytes. Electrochimica Acta, 2005,50(10):2073-2079
    [4] Perron A, Kiss L, Poncsak S. An experimental investigation of the motion of single bubbles under a slightly inclined surface. International Journal of Multiphase Flow, 2006,32(5):606-622
    [5] Kamei J, Saito Y, Yabu H. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film. Langmuir, 2014,30(47):14118-14122
    [6] Yang Q, Li T, Lu ZY, et al. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale, 2014,6(20):11789-11794
    [7] Kantarci N, Borak F, Ulgen KO. Bubble column reactors. Process Biochemistry, 2005,40(7):2263-2283
    [8] Zhu SW, Bian YC, Wu T, et al. Spontaneous and unidirectional transportation of underwater bubbles on superhydrophobic dual rails. Applied Physics Letters, 2020,116(9):093706
    [9] Yu CM, Zhang PP, Wang JM, et al. Superwettability of gas bubbles and its application: From bioinspiration to advanced materials. Advanced Materials, 2017,29(45):1703053
    [10] Xue XZ, Yu CM, Wang JM, et al. Superhydrophobic cones for continuous collection and directional transportation of CO$_{2}$ microbubbles in CO$_{2}$ supersaturated solutions. ACS Nano, 2016,10(12):10887-10893
    [11] Xu BJ, Wang QB, Meng QA, et al. In-air bubble phobicity and bubble philicity depending on the interfacial air cushion: Toward bubbles manipulation using superhydrophilic substrates. Advanced Functional Materials, 2019,29(20):1900487
    [12] Yu CM, Cao MY, Dong ZC, et al. Spontaneous and directional transportation of gas bubbles on superhydrophobic cones. Advanced Functional Materials, 2016,26(19):3236-3243
    [13] Tang X, Xiong H, Kong T, et al. Bioinspired nanostructured surfaces for on-demand bubble transportation. ACS Appl Mater Interfaces, 2018,10(3):3029-3038
    [14] Ma HY, Cao MY, Zhang CH, et al. Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments. Advanced Functional Materials, 2018,28(7):1705091
    [15] Yin K, Yang S, Dong XR, et al. Femtosecond laser fabrication of shape-gradient platform: Underwater bubbles continuous self-driven and unidirectional transportation. Applied Surface Science, 2019,471:999-1004
    [16] Song JL, Liu ZA, Wang XY, et al. High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. Journal of Materials Chemistry A, 2019,7(22):13567-13576
    [17] Ma R, Wang J, Yang Z, et al. Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium. Adv Mater, 2015,27(14):2384-2389
    [18] Wu CJ, Chang CC, Sheng YJ, et al. Extraordinarily rapid rise of tiny bubbles sliding beneath superhydrophobic surfaces. Langmuir, 2017,33(5):1326-1331
    [19] Cao M, Li Z, Ma H, et al. Is superhydrophobicity equal to underwater superaerophilicity: Regulating the gas behavior on superaerophilic surface via hydrophilic defects. ACS Appl Mater Interfaces, 2018,10(24):20995-21000
    [20] Xu RX, Xu XY, He MH, et al. Controllable manipulation of bubbles in water by using underwater superaerophobic graphene-oxide/gold-nanoparticle composite surfaces. Nanoscale, 2018,10(1):231-238
    [21] Yu CM, Zhu XB, Cao MY, et al. Superhydrophobic helix: controllable and directional bubble transport in an aqueous environment. Journal of Materials Chemistry A, 2016,4(43):16865-16870
    [22] Kibar A, Ozbay R, Sarshar MA, et al. Bubble movement on inclined hydrophobic surfaces. Langmuir, 2017,33(43):12016-12027
    [23] Jeong H, Park H. Near-wall rising behaviour of a deformable bubble at high Reynolds number. Journal of Fluid Mechanics, 2015,771:564-594
    [24] Javadi K, Davoudian SH. Surface wettability effect on the rising of a bubble attached to a vertical wall. International Journal of Multiphase Flow, 2018,109:178-190
    [25] Guan DS, Wang YJ, Charlaix E, et al. Asymmetric and speed-dependent capillary force hysteresis and relaxation of a suddenly stopped moving contact line. Physical Review Letters, 2016,116(6):066102
    [26] Guan DS, Wang YJ, Charlaix E, et al. Simultaneous observation of asymmetric speed-dependent capillary force hysteresis and slow relaxation of a suddenly stopped moving contact line. Physical Review E, 2016,94(4):042802
    [27] 黄超, 翁翕, 刘谋斌. 超疏水小球低速入水空泡研究. 力学学报, 2019,51(1):36-45

    (Huang Chao, Wen Xi, Liu Moubin. Study on low-speed water entry of super-hydrophobic small spheres. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):36-45 (in Chinese))
    [28] Maleprade Hd, Clanet C, Quéré D. Spreading of bubbles after contacting the lower side of an aerophilic slide immersed in water. Physical Review Letters, 2016,117(9):094501
    [29] Tu CX, Yang QC, Chen YY, et al. Anisotropic spreading of bubbles on superaerophilic straight trajectories beneath a slide in water. Water, 2020,12(3):798
    [30] 孙姣, 周维, 蔡润泽 等. 垂直壁面附近上升单气泡的弹跳动力学研究. 力学学报, 2020,52(1):1-11

    (Sun Jiao, Zhou Wei, Cai Runze, et al. The bounce dynamics of a rising single bubble near a vertical wall. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):1-11 (in Chinese))
    [31] 冯家兴, 胡海豹, 卢丙举 等. 超疏水沟槽表面通气减阻实验研究. 力学学报, 2020,52(1):24-30

    (Feng Jiaxing, Hu Haibao, Lu Bingju, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):24-30 (in Chinese))
    [32] Landau L, Levich B. Dragging of a liquid by a moving plate. Dynamics of Curved Fronts, 1988,17(2):141-153
    [33] Wang YJ, Guo S, Chen HY, et al. Understanding contact angle hysteresis on an ambient solid surface. Physical Review E, 2016,93(5):052802
    [34] 袁泉子, 沈文豪, 赵亚溥. 移动接触线的物理力学研究. 力学进展, 2016,46(1):343-381

    (Yuan Quanzi, Shen Wenhao, Zhao Yapu. Research on physical mechanics of moving contact lines. Advances in Mechanics, 2016,46(1):343-381 (in Chinese))
    [35] Friddle RW. Unified model of dynamic forced barrier crossing in single molecules. Physical Review Letters, 2008,100(13):138302
    [36] Guo S, Gao M, Xiong XM, et al. Direct measurement of friction of a fluctuating contact line. Physical Review Letters, 2013,111(2):026101
    [37] Maleprade HD, Pautard M, Clanet C, et al. Tightrope bubbles. Applied Physics Letters, 2019,14(23):233704
    [38] Wang JM, Zheng YM, Nie FQ, et al. Air bubble bursting effect of lotus leaf. Langmuir, 2009,25(24):14129-14134
    [39] Magnaudet J, Eames I. The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annual Review of Fluid Mechanics, 2000,32(1):659-708
    [40] Clift R, Grace JR, Weber ME. Bubbles, Drops, and Particles. New York: Courier Corporation, 2005
  • 加载中
计量
  • 文章访问数:  1130
  • HTML全文浏览量:  223
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回