[1] |
孙冬梅, 朱岳明, 张明进. 降雨入渗过程的水-气二相流模型研究. 水利学报, 2007(2):150-156(Sun Dongmei, Zhu Yueming, Zhang Mingjin. Water-air two-phase flow model for numerical analysis of rainfall infiltration. Journal of Hydraulic Engineering, 2007(2):150-156 (in Chinese))
|
[2] |
Pettersson K, Maggiolo D, Sasic S, et al. On the impact of porous media microstructure on rainfall infiltration of thin homogeneous green roof growth substrates. Journal of Hydrology, 2020,582:124286
|
[3] |
胡五龙, 刘国峰, 晏石林 等. 土壤水分布的孔隙尺度格子玻尔兹漫模拟研究. 力学学报, 2021,53(2):568-579(Hu Wulong, Liu Guofeng, Yan Shilin, et al. Pore-scale lattice Boltzmann modelling of soil water distribution. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):568-579 (in Chinese))
|
[4] |
施小清, 吴吉春, 姜蓓蕾 等. 包气带中降雨入渗单相流和二相流数值模拟对比. 工程勘察, 2011,39(1):38-45(Shi Xiaoqing, Wu Jichun, Jiang Beilei, et al. Comparison of numerical simulation based on water-gas two phase flow and single phase flow for the seepage in vadose zone. Geotechnical Investigation & Surveying, 2011,39(1):38-45 (in Chinese))
|
[5] |
Kacem M, Esrael D, Boeije CS, et al. Multiphase flow model for NAPL infiltration in both the unsaturated and saturated zones. Journal of Environmental Engineering, 2019,145(11):04019072
|
[6] |
张烨, 施小清, 邓亚平 等. 结合蒸汽和空气注入修复多孔介质中DNAPL污染物的多目标多相流模拟优化. 水文地质工程地质, 2015,42(5):140-148(Zhang Ye, Shi Xiaoqing, Deng Yapping, et al. Multi-objective multi-phase optimization with steam and air co-injection for DNAPL contaminant remediation in porous media. Hydogeology & Engineering Geology, 2015,42(5):140-148 (in Chinese))
|
[7] |
李淑霞, 郭尚平, 陈月明 等. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议. 力学学报, 2020,52(3):828-842(Li Shuxia, Guo Shangping, Chen Yueming, et al. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):828-842 (in Chinese))
|
[8] |
王者超, 李崴, 刘杰 等. 地下储气库发展现状与安全事故原因综述. 隧道与地下工程灾害防治, 2019,1(2):49-58(Wang Zhechao, Li Wei, Liu Jie, et al. A review on state-of-the-art of underground gas storage and causes of typical accidents. Hazard Control in Tunnelling and Underground Engineering, 2019,1(2):49-58 (in Chinese))
|
[9] |
蔡建超, 夏宇轩, 徐赛 等. 含水合物沉积物多相渗流特性研究进展. 力学学报, 2020,52(1):208-223(Cai Jianchao, Xia Yuxuan, Xu Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):208-223 (in Chinese))
|
[10] |
Lin D, Wang J, Yuan B, et al. Review on gas flow and recovery in unconventional porous rocks. Advances in Geo-Energy Research, 2017,1(1):39-53
|
[11] |
胡冉, 陈益峰, 万嘉敏 等. 超临界CO$_{2}$-水两相流与CO$_{2}$毛细捕获: 微观孔隙模型实验与数值模拟研究. 力学学报, 2017,49(3):638-648(Hu Ran, Chen Yifeng, Wan Jiamin, et al. Supercritical CO$_{2}$ water displacements and CO$_{2}$ capillary trapping: Micromodel experiment and numerical simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):638-648 (in Chinese))
|
[12] |
Zhang L, Soong Y, Dilmore R, et al. Numerical simulation of porosity and permeability evolution of Mount Simon sandstone under geological carbon sequestration conditions. Chemical Geology, 2015,403:1-12
|
[13] |
Xu T, Senger R, Finsterle S. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects. Applied Geochemistry, 2008,23(12):3423-3433
|
[14] |
Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 1988,189:165-187
|
[15] |
Liu Y, Iglauer S, Cai J, et al. Local instabilities during capillary-dominated immiscible displacement in porous media. Capillarity, 2019,2(1):1-7
|
[16] |
Hu R, Wan J, Yang Z, et al. Wettability and flow rate impacts on immiscible displacement: A theoretical model. Geophysical Research Letters, 2018,45(7):3077-3086
|
[17] |
蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2012,42(6):735-754(Cai Jianchao, Yu Boming. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2012,42(6):735-754 (in Chinese))
|
[18] |
王盟浩, 熊友明, 刘理明 等. 非均质多孔介质中剪切稀释流的非混相驱替研究. 岩石力学与工程学报, 2019,38(S2):3783-3789(Wang Menghao, Xiong Youming, Liu Liming, et al. Immiscible displacement of a shear-thinning fluid in heterogeneous porous media. Chinese Journal of Rock Mechanics and Engineering, 2019,38(S2):3783-3789 (in Chinese))
|
[19] |
鞠杨, 王金波, 高峰 等. 变形条件下孔隙岩石CH$_{4}$微细观渗流的Lattice Boltzmann模拟. 科学通报, 2014,59(22):2127-2136(Ju Yang, Wang Jinbo, Gao Feng, et al. Lattice-Boltzmann simulation of microscale CH$_{4}$ flow in porous rock subject to force-induced deformation. Chin Sci Bull, 2014,59:3292-3303 (in Chinese))
|
[20] |
Lu NB, Pahlavan AA, Browne CA, et al. Forced imbibition in stratified porous media. Physical Review Applied, 2020,14(5):054009
|
[21] |
Hu R, Lan T, Wei GJ, et al. Phase diagram of quasi-static immiscible displacement in disordered porous media. Journal of Fluid Mechanics, 2019,875:448-475
|
[22] |
Mehmani A, Kelly S, Torres-Verdín C, et al. Residual oil saturation following gas injection in sandstones: Microfluidic quantification of the impact of pore-scale surface roughness. Fuel, 2019,251:147-161
|
[23] |
Odier C, Levaché B, Santanach-Carreras E, et al. Forced imbibition in porous media: A fourfold scenario. Physical Review Letters, 2017,119(20):208005
|
[24] |
Ayaz M, Toussaint R, Sch?fer G, et al. Gravitational and finite-size effects on pressure saturation curves during drainage. Water Resources Research, 2020, 56(10): e2019WR026279
|
[25] |
Chen YF, Wu DS, Fang S, et al. Experimental study on two-phase flow in rough fracture: Phase diagram and localized flow channel. International Journal of Heat and Mass Transfer, 2018,122:1298-1307
|
[26] |
Jiang F, Tsuji T. Impact of interfacial tension on residual CO$_{2}$ clusters in porous sandstone. Water Resources Research, 2015,51(3):1710-1722
|
[27] |
Xu F, Chen Q, Ma M, et al. Displacement mechanism of polymeric surfactant in chemical cold flooding for heavy oil based on microscopic visualization experiments. Advances in Geo-Energy Research, 2020,4(1):77-85
|
[28] |
陈小龙, 李宜强, 廖广志 等. 减氧空气重力稳定驱驱替机理及与采收率的关系. 石油勘探与开发, 2020,47(4):780-788(Chen Xiaolong, Li Yiqiang, Liao Guangzhi, et al. Experimental investigation on stable displacement mechanism and oil recovery enhancement of oxygen-reduced air assisted gravity drainage. Petroleum Exploration and DevelopmenT, 2020,47(4):780-788 (in Chinese))
|
[29] |
刘日成, 蒋宇静, 李博 等. 岩体裂隙网络非线性渗流特性研究. 岩土力学, 2016,37(10):2817-2824(Liu Richeng, Jiang Yujing, Li Bo, et al. Nonlinear seepage behaviors of fluid in fracture networks. Rock and Soil Mechanics, 2016,37(10):2817-2824 (in Chinese))
|
[30] |
Iglauer S, Pentland CH, Busch A. CO$_{2}$ wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 2015,51(1):729-774
|
[31] |
Arif M, Abu-Khamsin SA, Iglauer S. Wettability of rock/CO$_{2}$/brine and rock/oil/CO$_{2}$-enriched-brine systems: critical parametric analysis and future outlook. Advances in Colloid and Interface Science, 2019,268:91-113
|
[32] |
Cieplak M, Robbins MO. Dynamical transition in quasistatic fluid invasion in porous media. Physical Review Letters, 1988,60(20):2042
|
[33] |
Cieplak M, Robbins MO. Influence of contact angle on quasistatic fluid invasion of porous media. Physical Review B, 1990,41(16):11508
|
[34] |
Holtzman R, Segre E. Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Physical Review Letters, 2015,115(16):164501
|
[35] |
Jung M, Brinkmann M, Seemann R, et al. Wettability controls slow immiscible displacement through local interfacial instabilities. Physical Review Fluids, 2016,1(7):074202
|
[36] |
Singh K, Scholl H, Brinkmann M, et al. The role of local instabilities in fluid invasion into permeable media. Scientific Reports, 2017,7(1):1-11
|
[37] |
Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 2016,113(37):10251-10256
|
[38] |
Chaudhary K, Bayani CM, Wolfe WW, et al. Pore-scale trapping of supercritical CO$_{2}$ and the role of grain wettability and shape. Geophysical Research Letters, 2013,40(15):3878-3882
|
[39] |
Spiteri EJ, Juanes R, Blunt MJ, et al. A new model of trapping and relative permeability hysteresis for all wettability characteristics. Spe Journal, 2008,13(3):277-288
|
[40] |
李朝鑫, 武晓刚, 孙玉琴 等. 微流控通道内细胞及其初级纤毛的力传导行为. 力学学报, 2021,53(1):260-277(Li Chaoxin, Wu Xiaogang, Sun Yuqin, et al. Mechanotransduction of the cell and its primary cilium in the microfluidic channel. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):260-277 (in Chinese))
|
[41] |
Whitesides GM. The origins and the future of microfluidics. Nature, 2006,442(7101):368-373
|
[42] |
Bartolo D, Degré G, Nghe P, et al. Microfluidic stickers. Lab on a Chip, 2008,8(2):274-279
|
[43] |
Wang YP, Yuan K, Li QL, et al. Preparation and characterization of poly (N-isopropylacrylamide) films on a modified glass surface via surface initiated redox polymerization. Materials Letters, 2005,59(14-15):1736-1740
|
[44] |
王迎军, 赵迎刚, 卢玲 等. 用硅烷偶联剂处理生物玻璃表面及其复合支架的制备. 硅酸盐学报, 2006,35(7):836-841(Wang Yingjun, Zhao Yinggang, Lu Ling, et al. Surface treatment of bioglass with silane coupling agent and its preparation for composite scaffolds. Journal of the Chinese Ceramic Society, 2006,35(7):836-841 (in Chinese))
|
[45] |
Schmidt SW, Christ T, Glockner C, et al. Simple coupling chemistry linking carboxyl-containing organic molecules to silicon oxide surfaces under acidic conditions. Langmuir, 2010,26(19):15333-15338
|
[46] |
杜高翔, 郑水林, 李杨. 超细水镁石的硅烷偶联剂表面改性. 硅酸盐学报, 2005,33(5):659-664(Du Gaoxiang, Zheng Shuilin, Li Yang. Surface modification of ultra-fine brucite powder by silane coupling agent. Journal of the Chinese Ceramic Society, 2005,33(5):659-664 (in Chinese))
|
[47] |
Krevor S, Blunt MJ, Benson SM, et al. Capillary trapping for geologic carbon dioxide storage——From pore scale physics to field scale implications. International Journal of Greenhouse Gas Control, 2015,40:221-237
|
[48] |
Hu R, Wan J, Kim Y, et al. Wettability impact on supercritical CO$_{2}$ capillary trapping: Pore-scale visualization and quantification. Water Resources Research, 2017,53(8):6377-6394
|
[49] |
Zhang C, Oostrom M, Wietsma TW, et al. Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy & Fuels, 2011,25(8):3493-3505
|
[50] |
Pak T, Butler IB, Geiger S, et al. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media. Proceedings of the National Academy of Sciences, 2015,112(7):1947-1952
|
[51] |
Wardlaw NC, McKellar M. Oil blob populations and mobilization of trapped oil in unconsolidated packs. The Canadian Journal of Chemical Engineering, 1985,63(4):525-532
|
[52] |
Li Y, Blois G, Kazemifar F, et al. High-speed quantification of pore-scale multiphase flow of water and supercritical CO$_{2}$ in 2-D heterogeneous porous micromodels: Flow regimes and interface dynamics. Water Resources Research, 2019,55(5):3758-3779
|
[53] |
Cao SC, Dai S, Jung J. Supercritical CO$_{2}$ and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies. International Journal of Greenhouse Gas Control, 2016,44:104-114
|
[54] |
Lan T, Hu R, Yang Z, et al. Transitions of fluid invasion patterns in porous media. Geophysical Research Letters, 2020, 47(20): e2020GL089682
|