[1] |
张涵信, 沈孟育. 计算流体力学—差分方法的原理和应用. 北京:国防工业出版社, 2003(Zhang Hanxin, Computational Fluid Dynamics, Principles and Application of Finite Difference Methods. Beijing: National Defense Industry Press, 2003 (in Chinese))
|
[2] |
Zhang SH, Li Q, Zhang LP, et al. The history of CFD in China. Acta Aerodynamica Sinica, 2016,34(2):157-174
|
[3] |
Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences. 2014, NASA/CR-2014-218178
|
[4] |
Chawner JR, Taylor NJ. Progress in geometry modeling and mesh generation toward the CFD vision 2030. AIAA Aviation Forum, June, 2019, Texas
|
[5] |
Baker TJ. Mesh generation: art or science. Progress in Aerospace Science, 2005,41(1):29-63
|
[6] |
Roy CJ, Tinoco EN. Summary of data from the sixth AIAA CFD drag prediction workshop: case 1 code verification. AIAA Paper 2017-1206, 2017
|
[7] |
Tinoco EN, Brodersen OP, Keye S, et al. Summary of data from the sixth AIAA CFD drag prediction workshop: CRM cases 2 to 5. AIAA Paper 2017-1208, 2017
|
[8] |
Rumsey CL, Slotnick JP. Overview and summary of the second AIAA high-lift prediction workshop. Journal of Aircraft, 2015,52(4):1006-1025
|
[9] |
Rumsey CL, Slotnick JP, Sclafani AJ. Overview and summary of the third AIAA high-lift prediction workshop. Journal of Aircraft, 2019,56(2):621-644
|
[10] |
王运涛, 刘刚, 陈作斌. 第一届航空CFD可信度研讨会总结. 空气动力学学报, 2019,37(2):84-99(Wang Yuntao, Liu Gang, Chen Zuobin. Summary of the first aeronautical computational fluid dynamics credibility workshop. Acta Aerodynamica Sinica, 2019,37(2):84-99 (in Chinese))
|
[11] |
王年华, 常兴华, 赵钟, 等. 基于HyperFLOW平台的客机标模CHN-T1气动性能预测及可信度研究. 空气动力学学报, 2019,37(2):139-147(Wang Nianhua, Chang Xinghua, Zhao Zhong, et al. Aerodynamic performance prediction and credibility study of the transport model CHN-T1 based on HyperFLOW solver. Acta Aerodynamica Sinica, 2019,37(2):139-147 (in Chinese))
|
[12] |
张天娇, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考. 航空工程进展, 2019,10(1):1-11(Zhang Tianjiao, Qian Weiqi, Zhou Yu, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics. Advances in Aeronautical Science and Engineering, 2019,10(1):1-11 (in Chinese))
|
[13] |
Kou JQ, Zhang WW. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling. Aerospace Science and Technology, 2017,67:309-326
|
[14] |
尹明朗, 寇家庆, 张伟伟, 等. 一种高泛化能力的神经网络气动力降阶模型. 空气动力学学报, 2017,35(2):205-213(Yin Minglang, Kou Jiaqing, Zhang Weiwei, et al. A reduced-order aerodynamic model with high generalization capability based on neural network. Acta Aerodynamica Sinica, 2017,35(2):205-213 (in Chinese))
|
[15] |
Kou JQ, Zhang WW. Layered reduced-order models for nonlinear aerodynamics and aeroelasticity. Journal of Fluids and Structures, 2017,68:174-193
|
[16] |
蔡声泽, 许超, 高琪, 等. 基于深度神经网络的粒子图像测速算法. 空气动力学学报, 2019,37(3):455-461(Cai Shengze, Xu Chao, Gao Qi, et al. Particle image velocimetry based on a deep neural network. Acta Aerodynamica Sinica, 2019,37(3):455-461 (in Chinese))
|
[17] |
Deng L, Wang YQ, Liu Y, et al. A CNN-based vortex identification method. Journal of Visualization, 2019,22(1):65-78
|
[18] |
Sekar V, Jiang QH, Shu C, et al. Fast flow field prediction over airfoils using deep learning approach. Physics of Fluids, 2019,31(5):057103
|
[19] |
Duraisamy K, Iaccarino G, Xiao H. Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 2019,51:357-377
|
[20] |
闫重阳, 张宇飞, 陈海昕. 基于离散伴随的流场反演在湍流模拟中的应用. 航空学报, 2021,42(4):624695(Yan Chongyang, Zhang Yufei, Chen Haixin. Applications of field inversion based on discrete adjoint method in turbulence modeling. Acta Aeronautica et Astronautica Sinica, 2021,42(4):624695 (in Chinese))
|
[21] |
Zhu LY, Zhang WW, Kou JQ, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils. Physics of Fluids, 2019,31(1):015105
|
[22] |
Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid dynamics. Annual Review of Fluid Mechanics, 2020,52(1):1-31
|
[23] |
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015,521(7553):436-444
|
[24] |
张来平, 常兴华, 赵钟, 等. 计算流体力学网格生成技术. 北京: 科学出版社, 2017(Zhang Laiping, Chang Xinghua, Zhao Zhong, et al. Mesh generation techniques in computational fluid dynamics. Beijing: Science Press, 2017 (in Chinese))
|
[25] |
梁义, 陈建军, 陈立岗, 等. 并行平面 Delaunay 网格生成. 浙江大学学报 (工学版), 2008,42(4):558-564(Liang Yi, Chen Jianjun, Chen Ligang, et al. Parallel planar Delaunay mesh generation. Journal of Zhejiang University (Engineering Science), 2008,42(4):558-564 (in Chinese))
|
[26] |
陈建军, 黄争舸, 杨永健 等. 复杂外形的非结构四面体网格生成算法. 空气动力学学报, 2010,28(4):400-404(Chen Jianjun, Huang Zhengke, Yang Yongjian, et al. Unstructured tetrahedral mesh generation for complex configurations. Acta Aerodynamica Sinica, 2010,28(4):400-404 (in Chinese))
|
[27] |
陈建军, 郑建靖, 季廷炜 等. 前沿推进曲面四边形网格生成算法. 计算力学学报, 2011,28(5):779-784(Chen Jianjun, Zheng Jianjing, Ji Tingwei, et al. Advancing front quadrilateral surface mesh generation. Chinese Journal of Computational Mechanics, 2011,28(5):779-784 (in Chinese))
|
[28] |
陈建军, 郑耀, 陈立岗, 等. 非结构化四边形网格生成新算法. 中国图象图形学报, 2008,13(9):1796-1803(Chen Jianjun, Zheng Yao, Chen Ligang, et al. A new unstructured quadrilateral mesh generation algorithm. Journal of Image and Graphics, 2008,13(9):1796-1803 (in Chinese))
|
[29] |
陈建军, 曹建, 徐彦, 等. 适应复杂外形的三维黏性混合网格生成算法. 计算力学学报, 2014, ( 3):363-370(Chen Jianjun, Cao Jian, Xu Yan, et al. Hybrid mesh generation algorithm for viscous computations of complex aerodynamics configurations. Chinese Journal of Computational Mechanics, 2014, ( 3):363-370 (in Chinese))
|
[30] |
Steger OL, Chaussee DS. Generation of body-fitted coordinates using hyperbolic partial differential equations. Journal on Scientific and Statistical Computing, 1980,1(4):431-437
|
[31] |
Matsuno K. Hyperbolic upwind method for prismatic grid generation. AIAA paper 2000-1003, 2000
|
[32] |
赵钟, 张来平, 赫新. 基于“各向异性”四面体网格聚合的复杂外形混合网格生成方法. 空气动力学学报, 2013,31(1):34-39(Zhao Zhong, Zhang Laiping, He Xin. Hybrid grid generation technique for complex geometries based on agglomeration of anisotropic tetrahedrons. Acta Aerodynamica Sinica, 2013,31(1):34-39 (in Chinese))
|
[33] |
甘洋科, 刘剑飞. 黏性边界层网格自动生成. 力学学报, 2017,49(5):1029-1041(Gan Keyang, Liu Jianfei. Automatic viscous boundary layer mesh generation. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1029-1041 (in Chinese))
|
[34] |
Chawner JR, Michal TR, Slotnick JP, et al. Summary of the 1st AIAA geometry and mesh generation workshop (GMGW-1) and future plans// 2018 AIAA Aerospace Sciences Meeting, 2018:0128
|
[35] |
Ahn CH, Lee SS, Lee HJ, et al. A self-organizing neural network approach for automatic mesh generation. IEEE Transactions on Magnetics, 1991,27(5):4201-4204
|
[36] |
Alfonzetti S, Coco S, Cavalieri S, et al. Automatic mesh generation by the Let-It-Grow neural network. IEEE Transactions on Magnetics, 1996,32(3):1349-1352
|
[37] |
Alfonzetti S. A finite element mesh generator based on an adaptive neural network. IEEE Transactions on Magnetics, 1998,34(5):3363-3366
|
[38] |
Alfonzetti S. A neural network generator for tetrahedral meshes. IEEE Transactions on Magnetics, 2003,39(3):1650-1653
|
[39] |
Alfonzetti S, Dilettoso E, Salerno N. An optimized generator of finite element meshes based on a neural network. IEEE Transactions on Magnetics, 2008,44(6):1278-1281
|
[40] |
Lu HQ, Wu YZ, Chen SC. A new method based on SOM network to generate coarse meshes for overlapping unstructured multigrid algorithm. Applied Mathematics and Computation, 2003,140:353-360
|
[41] |
陈先华. Let-It-Grow神经网络在网格剖分中的应用. [硕士论文]. 大连: 大连理工大学, 2008(Chen Xianhua. Application of Let-It-Grow neural networks in triangulation. [Master Thesis]. Dalian: Dalian University of Technology, 2008 (in Chinese))
|
[42] |
张伟, 姜献峰, 陈丽能, 等. 基于神经网络的三角形网格智能重建. 工程图学学报, 2004,1(1):71-75(Zhang Wei, Jiang Xianfeng, Chen Lineng, et al. Intelligent reconstruction of triangle mesh based on neural network. Journal of Engineering Graphics, 2004,1(1):71-75 (in Chinese))
|
[43] |
Jilani H, Bahreininejad A, Ahmadi MT. Adaptive finite element mesh triangulation using self-organizing neural networks. Advances in Engineering Software, 2009,40:1097-1103
|
[44] |
杨占华, 杨艳. SOM神经网络算法的研究与进展. 计算机工程, 2006,32(16):201-202(Yang Zhanhua, Yang Yan. Research and development of self-organizing maps algorithms. Computer Engineering, 2006,32(16):201-202 (in Chinese))
|
[45] |
Lowther DA, Dyck DN. A density driven mesh generator guided by a neural network. IEEE Transactions on Magnetics, 1993,29(2):1927-1930
|
[46] |
Chedid R, Najjar N. Automatic finite-element mesh generation using artificial neural networks-Part I: Prediction of mesh density. IEEE Transactions on Magnetics, 1996,32(5):5173-5178
|
[47] |
Zhang Z, Wang Y, Jimack PK, et al. Meshing net: A new mesh generation method based on deep learning. International Conference on Computational Science, 2020, arXiv: 2004.07016
|
[48] |
Yao S, Yan B, Chen B, et al. An ANN-based element extraction method for automatic mesh generation. Expert Systems with Applications, 2005,29(1):193-206
|
[49] |
Danglade F, Pernot JP, Veron P. On the use of machine learning to defeature CAD models for simulation. Computer-Aided Design and Applications, CAD Solutions LLC and Taylor & Francis Online, 2013,11(3):358-368
|
[50] |
Stadler D, Kosel F, Celic D, et al. Mesh deformation based on artificial neural networks. International Journal of Computational Fluid Dynamics, 2011,25(8):439-448
|
[51] |
高翔. 非结构CFD并行网格变形算法及其应用. [博士论文]. 长沙: 国防科技大学, 2018(Gao Xiang. Parallel unstructured mesh deformation algorithms and their applications in CFD. [PhD Thesis]. Changsha: National University of Defense Technology, 2018 (in Chinese))
|
[52] |
黄尚坤. 基于卷积神经网络的网格质量判别技术研究. [硕士论文]. 绵阳: 西南科技大学, 2019(Huang Shangkun. Research on grid quality discrimination technology based on convolutional neural network. [Master Thesis]. Mianyang: Southwest University of Science and Technology, 2019 (in Chinese))
|
[53] |
Hagan MT, Menhaj M. Training feed-forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 1994,5(6):989-993
|