EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DEM-FEM耦合方法的海上风机结构冰激振动分析

杨冬宝 高俊松 刘建平 宋础 季顺迎

杨冬宝, 高俊松, 刘建平, 宋础, 季顺迎. 基于DEM-FEM耦合方法的海上风机结构冰激振动分析[J]. 力学学报, 2021, 53(3): 682-692. doi: 10.6052/0459-1879-20-386
引用本文: 杨冬宝, 高俊松, 刘建平, 宋础, 季顺迎. 基于DEM-FEM耦合方法的海上风机结构冰激振动分析[J]. 力学学报, 2021, 53(3): 682-692. doi: 10.6052/0459-1879-20-386
Yang Dongbao, Gao Junsong, Liu Jianping, Song Chu, Ji Shunying. ANALYSIS OF ICE-INDUCTED STRUCTURE VIBRATION OF OFFSHORE WIND TURBINES BASED ON DEM-FEM COUPLED METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 682-692. doi: 10.6052/0459-1879-20-386
Citation: Yang Dongbao, Gao Junsong, Liu Jianping, Song Chu, Ji Shunying. ANALYSIS OF ICE-INDUCTED STRUCTURE VIBRATION OF OFFSHORE WIND TURBINES BASED ON DEM-FEM COUPLED METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 682-692. doi: 10.6052/0459-1879-20-386

基于DEM-FEM耦合方法的海上风机结构冰激振动分析

doi: 10.6052/0459-1879-20-386
基金项目: 1) 国家重点研发计划重点专项(2016YFC1401505);国家自然科学基金(51639004);国家自然科学基金(41576179);中国长江三峡集团有限公司科研项目(202003042)
详细信息
    作者简介:

    2) 季顺迎,教授,主要研究方向:颗粒材料计算力学及寒区海洋工程. E-mail: jisy@dlut.edu.cn

    通讯作者:

    季顺迎

  • 中图分类号: P751,P731.15

ANALYSIS OF ICE-INDUCTED STRUCTURE VIBRATION OF OFFSHORE WIND TURBINES BASED ON DEM-FEM COUPLED METHOD

  • 摘要: 冰载荷是海上风机在寒区安全运行的重要影响因素之一,由其引发的冰激振动给风机结构带来了严重的危害. 本文通过离散元(discrete element method, DEM)-有限元(finiteelement method, FEM)耦合方法建立了寒区单桩式风机结构的 冰激振动模型.采用具有粘结-破碎性能的球体离散单元描述平整海冰损伤破坏行为,采用梁单元和三角形平板壳单元构造带有抗冰锥体的单桩式风机有限元模型.采用DEM-FEM耦合方法模拟不同冰速、冰厚条件下单桩式风机与平整冰相互作用过程,并且与IEC规范和ISO标准经验公式对比验证该耦合模型计算冰载荷的准确性.对比风机塔筒顶端和基础顶端的位移和加速度响 应时程,定性地给出风机结构不同部位振动响应行为差异性.风机不同部位动力特性差异原因为风机结构独特结构特点:下部为大刚度桩基和上部为高柔度塔筒,使其动力特征表现为主从式结构特性. “主-从式结构”特征使得结构在复杂的冰载荷作用下,风机塔筒(子结构)和桩基(主结构)表现为不同的响应行为,风机不同部位振动周期和加速度谱两者出现差异. 本文研究成果为海上风机抗冰设计和疲劳分析提供了有益参考.

     

  • [1] 段磊, 李晔. 漂浮式海上大型风力机研究进展. 中国科学: 物理学力学天文学, 2016,46(12):18-28

    (Duan Lei, Li Ye. Progress of recent research and development in floating offshore wind turbines. Sci Sin-Phys Mech Astron, 2016,46(12):18-28 (in Chinese))
    [2] 陈嘉豪, 胡志强. 半潜式海上浮式风机气动阻尼特性研究. 力学学报, 2019,51(4):1255-1265

    (Chen Jiahao, Hu Zhiqiang. Study on aerodynamic damping of semi-submersible floating wind turbines. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1255-1265 (in Chinese))
    [3] 张大勇, 王国军, 王帅飞 等. 冰区海上风电基础的抗冰性能分析. 船舶力学, 2018,22(5):615-627

    (Zhang Dayong, Wang Guojun, Wang Shuaifei et al. Ice-resistant performance analysis of offshore wind turbine foundation in ice zone. Journal of Ship Mechanics, 2018,22(5):615-627
    [4] 岳前进, 许宁, 崔航, 等. 导管架平台安装锥体降低冰振效果研究. 海洋工程, 2011,2:18-24

    (Yue Qianjin, Xu Ning, Cui Hang, et al. Effect of adding cone to mitigate ice-induced vibration. The Ocean Engineering, 2011,2:18-24 (in Chinese))
    [5] Seidel M, Hendrikse H. Analytical assessment of sea ice-induced frequency lock-in for offshore wind turbine monopiles. Marine Structures, 2018,60:87-100
    [6] 丁红岩, 韩彦青, 张浦阳, 等. 全潜式浮式风机基础在不同风况下的动力特性研究. 振动与冲击, 2017,36(6):201-206

    (Hongyan Ding, Yanqing Han, Puyang Zhang, et al. Dynamic analysis of the submersible foundation for floating wind turbine in different wind condition. Joumal of Vibration and Shock, 2017,36(6):201-206 (in Chinese))
    [7] 武海斌, 黄焱, 李伟. 大直径单桩风机基础冰荷载模型试验研究. 海洋工程, 2018,36(2):83-91

    (Wu Haibin, Huang Yan, Li Wei. Experimental study on the ice load of large-diameter monopile wind turbine foundations. The Ocean Engineering, 2018,36(2):83-91 (in Chinese))
    [8] Barker A, Timco G, Gravesen H, et al. Ice loading on Danish wind turbines Part 1: Dynamic model tests. Cold Regions Science and Technology, 2005,41(1):1-23
    [9] Gravesen H, Sorensen SL, Volund P, et al. Ice loading on Danish wind turbines: Part 2. Analyses of dynamic model test results. Cold Regions science and Technology, 2005,41(1):25-47
    [10] Wang Q. Ice-inducted vibrations under continuous brittle crushing for an offshore wind turbine. Norwegian University of Science and Technology, 2015
    [11] Shi W, Tan X, Gao Z, et al. Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions. Cold Regions Science and Technology, 2016,123:121-139
    [12] Heinonen J, Rissanen S. Coupled-crushing analysis of a sea ice-wind turbine interaction - feasibility study of FAST simulation software. Ships and Offshore Structures, 2017,12(7-8):1056-1063
    [13] Song M, Shi W, Ru Z, et al. Numerical study of the interaction between level ice and wind turbine tower for estimation of ice crushing loads on structure. Marine Science and Engineering, 2019,7:439-462
    [14] 王国军, 张大勇, 娄春娟, 等. 冰区海上风机基础的振动分析. 船海工程, 2016,45(3):109-113

    (Wang Guojun, Zhang Dayong, Lou Chunjuan, et al. Vibration analysis of offshore wind turbine foundation in ice zone. Hip & Ocean Engineering, 2016,45(3):109-113 (in Chinese))
    [15] 黄焱, 马玉贤, 罗金平, 等. 渤海海域单柱三桩式海上风电结构冰激振动分析. 海洋工程, 2016,34(5):1-10

    (Huang Yan, Ma Yuxian, Luo Jinping, et al. Analyses on ice induced vibrations of a tripod piled offshore wind turbine structure in Bohai Sea. The Ocean Engineering, 2016,34(5):1-10 (in Chinese))
    [16] 王宾, 李红涛, 刘嵩, 等. 海上风电单桩式支撑结构冰激振动及参数敏感性分析. 海洋工程, 2020,38(3):94-101

    (Wang Bin, Li Hongtao, Liu Song, et al. Ice-induced vibration and parameter sensitivity analysis for a monopile supported offshore wind turbine. The Ocean Engineering, 2020,38(3):94-101 (in Chinese))
    [17] 季顺迎, 狄少丞, 李正, 等. 海冰与直立结构相互作用的离散单元数值模拟. 工程力学, 2013,30(1):463-469

    (Ji Shunying, Di Shaocheng, Li Zheng, et al. Discrete element modeling of interaction between sea ice and vertical offshore structures. Engineering Mechanics, 2013,30(1):463-469 (in Chinese))
    [18] 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法. 力学学报, 2019,51(6):1720-1739

    (Liu Lu, Yin Zhenyu, Ji Shunying. High-performance dilated polyhedral based dem for ice loads on ship and offshore platform structures. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1720-1739 (in Chinese))
    [19] Luo W, Jiang D, Wu T, et al. Numerical simulation of an ice-strengthened bulk carrier in brash ice channel. Ocean Engineering, 2020,196:106830
    [20] 龙雪, 宋础, 季顺迎, 等. 锥角对锥体结构抗冰性能影响的离散元分析. 海洋工程, 2018,36(6):96-104

    (Long Xue, Song Chu, Ji Shunying, et al. Influence of cone angle on anti-icing performance of conical structure with numerical simulations of discrete element method. The Ocean Engineering, 2018,36(6):96-104 (in Chinese))
    [21] 王帅霖, 刘社文, 季顺迎. 基于GPU并行的锥体导管架平台结构冰激振动DEM-FEM耦合分析. 工程力学, 2019,36(10):28-39

    (Wang Shuailin, Liu Shewen, Ji Shuiying. Coupled discrete-finite element analysis for ice-induced vibration of conical jacket platform based on GPU-based parallel algorithm. Engineering Mechanics, 2019,36(10):28-39 (in Chinese))
    [22] Cundall PA, Potyondy DO. A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 2004,41(8):1329-1364
    [23] Long X, Liu S, Ji S. Discrete element modelling of relationship between ice breaking length and ice load on conical structure. Ocean Engineering, 2020,201:107152
    [24] Long X, Ji S, Wang Y. Validation of microparameters in discrete element modeling of sea ice failure process. Particulate Science Technology, 2019,37(5):550-559
    [25] Long X, Liu S. Breaking characteristics of ice cover and dynamic ice load on upward downward conical structure based on DEM simulations. Computational Particle Mechanics, 2020, https://doi.org/10.1007/s40571-020-00331-8
    [26] 吴辉碇, 杨国金, 张方俭, 等. 等.渤海海冰设计作业条件. 北京: 海洋出版社, 2001

    (Wu Huiding, Yang Guojin, Zhang Fangjian, et al. Design and Operation Conditions of Sea Ice in the Bohai Sea. Beijing: China Ocean Press, 2001 (in Chinese))
    [27] Liu L, Ji SY. Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field. Applied Ocean Research, 2018,75:53-65
    [28] IEC61400-3,Wind turbines Part3: Design requirements for offshore wind turbines. Geneva: International Electrotechnical Commission, 2009
    [29] International Organization for Standardization. ISO 19906: 2010, Petroleum and natural gas industries-Arctic offshore structures. Europe: International Standardization for Organization, 2010
    [30] 龙雪, 刘社文, 季顺迎. 水位变化对正倒锥体冰载荷影响的离散元分析. 力学学报, 2019,51(1):74-84

    (Long Xue, Liu Shewen, Ji Shunying. Influence of water level on ice load on upward-downward conical structure based on DEM analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):74-84 (in Chinese))
    [31] 季顺迎, 王安良, 车啸飞, 等. 锥体导管架海洋平台冰激结构振动响应分析. 海洋工程, 2011,29(2):32-39

    (Ji Shunying, Wang Anliang, Che Xiaofei, et al. Analysis of ice-induced structure vibration of offshore jacket platform with ice breaking cone. The Ocean Engineering, 2011,29(2):32-39 (in Chinese))
    [32] Yue Q, Guo F. K?rn? T. Dynamic ice forces of slender vertical structures due to ice crushing. Cold Regions Science and Technology, 2009,56(2):77-83
  • 加载中
计量
  • 文章访问数:  441
  • HTML全文浏览量:  80
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-15
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回