EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饱和多孔黏弹地基热-水-力耦合动力响应分析

郭颖 李文杰 马建军 梁斌 熊春宝

郭颖, 李文杰, 马建军, 梁斌, 熊春宝. 饱和多孔黏弹地基热-水-力耦合动力响应分析[J]. 力学学报, 2021, 53(4): 1081-1092. doi: 10.6052/0459-1879-20-385
引用本文: 郭颖, 李文杰, 马建军, 梁斌, 熊春宝. 饱和多孔黏弹地基热-水-力耦合动力响应分析[J]. 力学学报, 2021, 53(4): 1081-1092. doi: 10.6052/0459-1879-20-385
Guo Ying, Li Wenjie, Ma Jianjun, Liang Bin, Xiong Chunbao. DYNAMIC COUPLED THERMO-HYDRO-MECHANICAL PROBLEM FOR SATURATED POROUS VISCOELASTIC FOUNDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1081-1092. doi: 10.6052/0459-1879-20-385
Citation: Guo Ying, Li Wenjie, Ma Jianjun, Liang Bin, Xiong Chunbao. DYNAMIC COUPLED THERMO-HYDRO-MECHANICAL PROBLEM FOR SATURATED POROUS VISCOELASTIC FOUNDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1081-1092. doi: 10.6052/0459-1879-20-385

饱和多孔黏弹地基热-水-力耦合动力响应分析

doi: 10.6052/0459-1879-20-385
基金项目: 1)国家自然科学基金资助项目(11502072)
详细信息
    作者简介:

    2)郭颖, 讲师, 主要研究方向: 介质的多场耦合动力响应. E-mail: gytha_ying@163.com;

    通讯作者:

    郭颖

    梁斌

  • 中图分类号: TU453

DYNAMIC COUPLED THERMO-HYDRO-MECHANICAL PROBLEM FOR SATURATED POROUS VISCOELASTIC FOUNDATION

  • 摘要: 天然土体由于沉积条件和应力状态不同, 往往会表现出一定的流变性. 本文研究地基上表面受外载荷作用时, 渗透系数和孔隙率变化对饱和多孔黏弹性地基热-水-力耦合动力响应问题的影响. 基于Biot波动方程、达西定律和Lord-Shulman广义热弹性理论, 并引入了考虑黏弹性松弛时间因子的Kelvin-Voigt黏弹性模型研究地基上表面受热/力源作用时, 孔隙率和渗透系数变化对均质各向同性饱和多孔黏弹性地基中所考虑的各无量纲量的影响. 根据不同的边界条件采用正则模态法推导出无量纲竖向位移、超孔隙水压力、竖向应力和温度的解析表达式, 结合算例分析了不同变量对各物理量的影响. 正则模态法是一种加权残差法, 可不经正、反积分变换将方程快速解耦并消除数值反变换的局限性. 结果表明: 无论何种载荷作用时, 载荷频率变化对所有考虑的物理量均有明显的影响; 孔隙率和渗透系数均对无量纲超孔隙水压力有明显的影响, 当仅考虑热载荷作用时, 孔隙率和渗透系数变化对无量纲温度均无影响. 正则模态法可广泛应用于岩土工程领域, 尤其适用于商业建筑、高速铁路和公路能源基础的热、力学特性研究中. 该研究结果可为工程施工奠定一定的理论基础, 具有一定的指导性意义.

     

  • [1] Biot MA. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 1956,27:240-253
    [2] Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 1967,15:299-309
    [3] Green AE, Lindsay KA. Thermoelasticity. Journal of Elasticity, 1972,2:1-7
    [4] Green AE, Naghdi PM. A reexamination of the basic results of themomechanics. Proceedings of the Royal Society of London A, 1991,432:171-194
    [5] Green AE, Naghdi PM. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 1992,15:252-264
    [6] Green AE, Naghdi PM. Thermoelasticity without energy dissipation. Journal of Elasticity, 1993,31:189-208
    [7] Tzou DY. A unified field approach for heat conduction from macro to mcro acales. ASME Journal of Heat Transfer, 1995,117:8-16
    [8] Youssef HM. Theory of two-temperature-generalized thermoelasticity. IMA Journal of Applied Mathematics, 2006,71:383-390
    [9] Roychoudhuri SK. On a thermoelastic three-phase-lag model. Journal of Thermal Stresses, 2007,30:231-238
    [10] Hetnarski RB, Ignaczak J. Generalized thermoelasticity. Journal of Thermal Stresses, 1999,22:451-476
    [11] 王颖泽, 张小兵, 宋新南. 圆柱外表面受热冲击问题的广义热弹性分析. 力学学报, 2012,44(2):317-325

    (Wang Yingze, Zhang Xiaobin, Song Xinnan. Research on generalized thermoelastic problems of a solid cylinder subjected to thermal shock. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(2):317-325 (in Chinese))
    [12] 许新, 李世荣. 功能梯度材料微梁的热弹性阻尼研究. 力学学报, 2017,49(2):308-316

    (Xu Xin, Li Shirong. Analysis of thermoelastic damping for functionally graded material micro-beam. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):308-316 (in Chinese))
    [13] 马航空, 周晨阳, 李世荣. Mindlin矩形微板的热弹性阻尼解析解. 力学学报, 2020,52(5):1383-1393

    (Ma Hangkong, Zhou Chenyang, Li Shirong. Anlytical solution of thermoelastic damping in rectangular Mindlin micro plates. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1383-1393 (in Chinese))
    [14] 李妍, 何天虎, 田晓耕. 超短激光脉冲加热薄板的广义热弹扩散问题. 力学学报, 2020,52(5):1255-1266

    (Li Yan, He Tianhu, Tian Xiaogeng. A generalized thermoelastic diffusion problem of thin plate heated by the ultrashort laser pulses. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1255-1266 (in Chinese))
    [15] 胡克强, 高存法, 仲政 等. 磁-电-弹性半空间在轴对称热载荷作用下的三维问题研究. 力学学报, 2020,52(5):1235-1244

    (Hu Keqiang, Gao Cunfa, Zhong Zheng, et al. Three-dimensional analysis of a magnetoelectroelastic half-space under axisymmetric temperature loading. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1235-1244 (in Chinese))
    [16] 王立安, 赵建昌, 杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报, 2020,52(3):1189-1198

    (Wang Li'an, Zhao Jianchang, Yang Huazhong. Non-axisymmetric mixed boundary value problem for dynamic interaction between saturated porous foundation and rectangular plate. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):1189-1198 (in Chinese))
    [17] 白冰. 饱和多孔介质热-水-力控制方程耦合项的意义及耦合影响分析. 岩土力学, 2006,27(4):519-536

    (Bai Bing. Effects of coupling schemes of thermo hydro-mechanical governing equations for saturated porous medium. Rock and Soil Mechanics, 2006,27(4):519-536 (in Chinese))
    [18] 刘干斌, 郑荣跃, 卢正. 爆轰载荷作用下球空腔热流固耦合动力响应. 岩土力学, 2010,31(3):918-924

    (Liu Ganbin, Zheng Rongyue, Lu Zheng. Thermo-hydro-elastodynamic response of spherical hollow chamber under explosive loading. Rock and Soil Mechanics, 2010,31(3):918-924 (in Chinese))
    [19] 卢正, 姚海林, 刘干斌 等. 简谐线源载荷作用下热流固耦合地基的动力响应. 岩土力学, 2010,31(7):2309-231

    (Lu Zheng, Yao Hailin, Liu Ganbin, et al. Dynamic response of coupling thermo-hydro-mechanical foundation subjected to harmonic line loads. Rock and Soil Mechanics, 2010,31(7):2309-2316 (in Chinese))
    [20] 汪鹏程, 孙玲玲, 开前正. 冲击载荷作用下软土隧道结构热-流-固耦合动力响应分析. 岩土力学, 2012,33(1):185-190

    (Wang Pengcheng, Sun Lingling, Kai Qianzheng. Coupling thermo-hydro-elasto dynamic response of tunnel structure-saturated soil under thermo-mechanical shock. Rock and Soil Mechanics, 2012,33(1):185-190 (in Chinese))
    [21] 熊春宝, 胡倩倩, 郭颖. 孔隙率各向异性下饱和多孔弹性地基动力响应. 力学学报, 2020,52(4):1120-1130

    (Xiong Chunbao, Hu Qianqian, Guo Ying. Dynamic response of saturated porous elastic foundation under porosity anisotropy. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1120-1130 (in Chinese))
    [22] 张义同. 热黏弹性理论.天津: 天津大学出版社, 2002

    (Zhang Yitong. Thermoviscoelastic Theory. Tianjin: Tianjin University Press, 2002 (in Chinese))
    [23] Ezzat MA, Othman MI, El-Karamany AS. State space approach to two-dimensional generalized thermoviscoelasticity with one relaxation time. Journal of Thermal Stresses, 2002,25:295-316
    [24] Ezzat MA, El-Bary AA. On thermo-viscoelastic infinitely long hollow cylinder with variable thermal conductivity. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2017,23(8):3263-3270
    [25] Ezzat MA, El-Karamany AS. The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. International Journal of Engineering Science, 2002,40:1275-1284
    [26] 何天虎, 井绪明. 半无限黏弹杆的广义磁热黏弹问题. 应用力学学报, 2009,26(3):584-588

    (He Tianhu, Jing Xuming. Generalized magneto-thermoviscoelastic problem for a semi-Infinite rod. Chinese Journal of Applied Mechanicas, 2009,26(3):584-588 (in Chinese))
    [27] 何天虎, 井绪明. 两端固定有限长黏弹杆的广义磁热黏弹问题. 兰州大学学报(自然科学版), 2009,45(2):114-119

    (He Tianhu, Jing Xuming. Generalized magneto-thermo-viscoelastic problems for a finite rod fixed at both ends.Journal of Lanzhou University $($Natural Sciences$)$, 2009,45(2):114-119 (in Chinese))
    [28] 李吉伟, 何天虎. 考虑应变率的广义压电热弹理论及其应用. 力学学报, 2020,52(5):1267-1276

    (Li Jiwei, He Tianhu. A generalized piezoelectric-thermoelastic theory with strain rate and its application. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1267-1276 (in Chinese))
    [29] Kar A, Kanoria M. Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect. Applied Mathematical Modelling, 2009,33:3287-3298
    [30] Andreea B. Spatial behavior in dynamical thermoviscoelasticity backward in time for porous media. Journal of Thermal Stresses, 2016,39(12):1523-1538
    [31] Othman MI, Abouelregal AEE. The effect of pulsed laser radiation on a thermoviscoelastic semi-infinite solid under two-temperature theory. Archives of Thermodynamics, 2017,3(38):77-99
    [32] Sherief HH, Allam AA. 2D Axisymmetric problem for a sphere with heat sources in the theory of generalized thermoviscoelasticity. International Journal of Applied Mechanics, 2017,9(2):1750028
    [33] Zenkour AM, Abouelregal AE. A three-dimensional generalized shock plate problem with four thermoviscoelastic relaxations. Canadian Journal of Physics, 2018,96(8):938-954
    [34] 康建宏, 谭文长. 多孔介质内黏弹性流体的热对流稳定性研究. 力学学报, 2018,50(6):1436-1457

    (Kang Jianhong, Tan Wenchang. Thermal instability of viscoelastic fluids in porous media. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1436-1457 (in Chinese))
    [35] Iesan D. A theory of porous thermoviscoelastic mixtures. Journal of Thermal Stresses, 2007,30:693-714
    [36] Fernández JR, Masid M. A porous thermoviscoelastic mixture problem: Numerical analysis and computational experiments. Applicable Analysis, 2018,97(7):1074-1093
    [37] Elhagary MA. Boundary integral equation formulation for the generalized thermoviscoelasticity with one relaxation time. Engineering Analysis with Boundary Elements, 2019,104:209-214
    [38] 徐长节, 马晓华. 黏弹性准饱和土中球空腔的动力响应. 岩土力学, 2005,26(8):1189-1194

    (Xu Changjie, Ma Xiaohua. Dynamic response of spherical cavity in nearly saturated viscoelastic soils. Rock and Soil Mechanics, 2005,26(8):1189-1194 (in Chinese))
    [39] 祝彦知, 李冬霞, 方志. 横观各向同性饱和土体三维黏弹性动力分析. 岩土力学, 2005,26(10):1557-1564

    (Zhu Yanzhi, Li Dongxia, Fang Zhi. Three dimensional 3-D viscoelastic dynamic analysis of transversely isotropic fluid-saturated poroelastic soil in time domain. Rock and Soil Mechanics, 2005,26(10):1557-1564 (in Chinese))
    [40] Biot MA. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941,12:155-164
    [41] Lu Z, Yao HL, Liu GB. Thermomechanical response of a poroelastic half-space soil medium subjected to time harmonic loads. Computers and Geotechnics, 2010,37:343-350
    [42] Sarkar N, Bachher M, Lahiri A. State-apace approach to 3D generalized thermoviscoelasticity under Green-Nagdhi theory. New Zealand Journal of Mathematics, 2016,46:97-113
    [43] He TH, Li SR. A two-dimensional generalized electromagneto-thermoelastic problem for a half-space. Journal of Thermal Stresses, 2006,29:683-698
    [44] Biswas S. State space approach to thermoelastic problem with three-phase-lag model. International Applied Mechanics, 2020,56:240-252.
    [45] Bai B. Fluctuation responses of saturated porous media subjected to cyclic thermal loading. Computers and Geotechnics, 2006,33:396-403
    [46] Liu GB, Liu XH, Ye RH. The relaxation effects of a saturated porous media using the generalized thermoviscoelasticity theory. International Journal of Engineering Science, 2010,48:795-808
    [47] Deswal S, Kalkal K. A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion. International Journal of Thermal Sciences, 2011,50:749-759
    [48] Guo Y, Zhu HB, Xiong CB, et al. A two-dimensional generalized thermo-hydromechanical-coupled problem for a poroelastic half-space. Waves in Random and Complex Media, 2020,30:738-758
  • 加载中
计量
  • 文章访问数:  680
  • HTML全文浏览量:  128
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回