EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑微观变形特征的水凝胶均匀和非均匀溶胀分析及其影响参数研究

刘岩 王惠明

刘岩, 王惠明. 考虑微观变形特征的水凝胶均匀和非均匀溶胀分析及其影响参数研究[J]. 力学学报, 2021, 53(2): 437-447. doi: 10.6052/0459-1879-20-368
引用本文: 刘岩, 王惠明. 考虑微观变形特征的水凝胶均匀和非均匀溶胀分析及其影响参数研究[J]. 力学学报, 2021, 53(2): 437-447. doi: 10.6052/0459-1879-20-368
Liu Yan, Wang Huiming. HOMOGENEOUS AND INHOMOGENEOUS SWELLING AND PARAMETRIC STUDY OF HYDROGELS CONSIDERING THE MICROSTRUCTURAL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 437-447. doi: 10.6052/0459-1879-20-368
Citation: Liu Yan, Wang Huiming. HOMOGENEOUS AND INHOMOGENEOUS SWELLING AND PARAMETRIC STUDY OF HYDROGELS CONSIDERING THE MICROSTRUCTURAL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 437-447. doi: 10.6052/0459-1879-20-368

考虑微观变形特征的水凝胶均匀和非均匀溶胀分析及其影响参数研究

doi: 10.6052/0459-1879-20-368
基金项目: 1) 国家自然科学基金资助项目(11772296)
详细信息
    作者简介:

    2) 王惠明, 教授, 主要研究方向: 多场耦合力学,智能软材料非线性力学. E-mail: wanghuiming@zju.edu.cn

    通讯作者:

    王惠明

  • 中图分类号: O343.5

HOMOGENEOUS AND INHOMOGENEOUS SWELLING AND PARAMETRIC STUDY OF HYDROGELS CONSIDERING THE MICROSTRUCTURAL DEFORMATION

  • 摘要: 本文给出考虑微观变形的水凝胶溶胀的分析模型,该模型假设构成聚合物网络的单链受到由于周围链的作用而产生类似圆管状的约束,并且认为每个单链变形与网络变形之间存在非仿射关系.利用该模型分析了凝胶在自由溶胀情形,预拉伸凝胶单一方向溶胀情形以及具有刚性核的球形凝胶溶胀至平衡状态情形的变形特征.研究表明, 对于自由溶胀的均匀变形情形, 水凝胶微观单链与宏观网络的变形相一致,伸长率随链段数的增加而增大, 随单链密度的增大而减小.伸长率也会随有效圆管几何参数数值的增大而增大,但是当外部溶剂压力达到一定数值以后单链的圆管约束对凝胶溶胀变形影响逐渐减小.在单一方向溶胀状态下,预拉伸凝胶会出现微观单链和宏观网络伸长率相等的溶胀平衡状态,此时约束应力等于零.具有刚性核的球形凝胶溶胀至平衡状态时产生径向和环向伸长率不相等的非均匀球对称变形.在刚性核的附近, 单链和网络的径向伸长率均大于自由溶胀状态伸长率.在远离刚性核的位置, 单链和网络的伸长率均接近自由溶胀状态的伸长率.网络渗透压随有效圆管几何参数数值的增大而降低,溶剂分子体积分数则随有效圆管几何参数数值的增大而增大.所建立的分析模型可以模拟凝胶溶胀导致的微观单链变形.

     

  • [1] Bruggeman KF, Williams RJ, Nisbet DR. Dynamic and responsive growth factor delivery from electrospun and hydrogel tissue engineering materials. Advanced Healthcare Materials, 2018,7(1):1700836
    [2] Rizwan M, Yahya R, Hassan A. et al. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers, 2017,9(4):137
    [3] Wirthl D, Pichler R, Drack M. et al. Instant tough bonding of hydrogels for soft machines and electronics. Science Advances, 2017,3(6):e1700053
    [4] Flory PJ. Statistical mechanics of swelling of network structures. The Journal of Chemical Physics, 1950,18(1):108-111
    [5] Hong W, Zhao X, Zhou J. et al. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008,56(5):1779-1793
    [6] 杨健鹏, 王惠明. 功能梯度球形水凝胶的化学力学耦合分析. 力学学报, 2019,51(4):1054-1063

    (Yang Jianpeng, Wang Huiming. Chemical-mechanical coupling analysis of functionally graded spherical hydrogels. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(4):1779-1793 (in Chinese))
    [7] 白渝平, 杨荣杰, 李建民 等. PVA-PAA IPN水凝胶的制备及其溶胀性质研究. 高分子材料科学与工程, 2002,18(1):98-101

    (Bai Yuping, Yang Rongjie, Li Jianmin et al. Preparation and swelling properties study of PVA-PAA IPN hydrogel. Chinese Polymer Materials Science and Engineering. 2002,18(1):98-101 (in Chinese))
    [8] Treloar LRG. The elasticity of a network of long-chain molecules. I. Transactions of the Faraday Society, 1943,39:36-41
    [9] Rivlin RS. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948,241(835):379-397
    [10] Gent AN. A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996,69(1):59-61
    [11] Ogden RW. Non-linear Elastic Deformations. New York: Dover Publications, Inc., 1997
    [12] Wang MC, Guth E. Statistical theory of networks of non-Gaussian flexible chains. The Journal of Chemical Physics, 1952,20(7):1144-1157
    [13] Treloar LRG. The swelling of cross-linked amorphous polymers under strain. Transactions of the Faraday Society, 1950,46:783-789
    [14] Flory PJ, Rehner Jr J. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. The Journal of Chemical Physics, 1943,11(11):512-520
    [15] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993,41:389-412
    [16] Beatty MF. An average-stretch full-network model for rubber elasticity. Journal of Elasticity, 2003,70(1-3):65-86
    [17] Marckmann G, Verron E. Comparison of hyperelastic models for rubber-like materials. Rubber Chemistry and Technology, 2006,79(5):835-858
    [18] Boyce MC, Arruda EM. Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 2000,73(3):504-523
    [19] Miehe C, G?ktepe S, Lulei F. A micro-macro approach to rubber-like materials——part I: The non-affine micro-sphere model of rubber elasticity. Journal of the Mechanics and Physics of Solids, 2004,52(11):2617-2660
    [20] Huang R, Zheng S, Liu Z. et al. Recent advances of the constitutive models of smart materials-hydrogels and shape memory polymers. International Journal of Applied Mechanics, 2020,12(2):2050014
    [21] Li Z, Liu Z. The elongation-criterion for fracture toughness of hydrogels based on percolation model. Journal of Applied Physics, 2020,127(21):215101
    [22] Lei J, Xu S, Li Z. et al. Study on large deformation behavior of polyacrylamide hydrogel using dissipative particle dynamics. Frontiers in Chemistry, 2020,8:115
    [23] 彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展. 力学学报, 2020,52(5):1221-1234

    (Peng Xiangfeng, Li Luxian. State of the art of constitutive relations of hyperelastic materials. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(5):1221-1232 (in Chinese))
    [24] 张希润, 蔡力勋, 陈辉. 基于能量密度等效的超弹性压入模型与双压试验方法. 力学学报, 2020,52(3):787-796

    (Zhang Xirun, Cai Lixun, Chen Hui. Hyperelastic indentation models and the dual-indentation method based on energy density equivalence. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(3):787-796 (in Chinese))
    [25] 史惠琦, 王惠明. 一种新型介电弹性体仿生可调焦透镜的变焦分析. 力学学报, 2020,52(6):1719-1729

    (Shi Huiqi, Wang Huiming. Theoretical nonlinear analysis of a biomimetic tunable lens driven by dielectric elastomer. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(6):1719-1729 (in Chinese))
    [26] Flory PJ. Thermodynamics of high polymer solutions. The Journal of Chemical Physics, 1942,10(1):51-61
    [27] Zhao X, Hong W, Suo Z. Inhomogeneous and anisotropic equilibrium state of a swollen hydrogel containing a hard core. Applied Physics Letters, 2008,92(5):051904
    [28] Hong W, Liu Z, Suo Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures, 2009,46(17):3282-3289
    [29] 苏恒迪, 颜慧贤, 金波. 基于Slip-Link 模型的凝胶大变形与扩散耦合瞬态问题分析. 力学季刊, 2017,38(4):681-692

    (Su Hengdi, Yan Huixian, Jin Bo. Analysis of coupled transient problem of gel large deformation and diffusion based on slip-link model. Chinese Quarterly of Mechanics. 2017,38(4):681-692 (in Chinese))
    [30] Cohen N, McMeeking RM. On the swelling induced microstructural evolution of polymer networks in gels. Journal of the Mechanics and Physics of Solids, 2019,125:666-680
    [31] Ba?ant P, Oh BH. Efficient numerical integration on the surface of a sphere. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1986,66(1):37-49
    [32] Cohen N. A generalized electro-elastic theory of polymer networks. Journal of the Mechanics and Physics of Solids, 2018,110:173-191
    [33] Cohen N, Dayal K, deBotton G. Electroelasticity of polymer networks. Journal of the Mechanics and Physics of Solids, 2016,92:105-126
    [34] Cohen N, Menzel A, DeBotton G. Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences, 2016,472(2186):20150462
    [35] Cohen N, Saleh OA, McMeeking RM. Engineering the mechanical behavior of polymer networks with flexible self-assembled v-shaped monomers. Macromolecules, 2018,51(8):3149-3155
    [36] Bleistein T, Jung A, Diebels S. A microsphere-based material model for open cell metal foams. Continuum Mechanics and Thermodynamics, 2020,32(1):255-267
    [37] Cohen N. Programming the equilibrium swelling response of heterogeneous polymeric gels. International Journal of Solids and Structures, 2019,178:81-90
    [38] Treloar LRG. The Physics of Rubber Elasticity. Oxford University Press, 1975: 101-124
    [39] Heinrich G, Straube E. On the strength and deformation dependence of the tube-like topological constraints of polymer networks, melts and concentrated solutions. I. The polymer network case. Acta Polymerica, 1983,34(9):589-594
    [40] Heinrich G, Kaliske M. Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Computational and Theoretical Polymer Science, 1997,7(3-4):227-241
    [41] Chester SA, Anand L. A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels. Journal of the Mechanics and Physics of Solids, 2011,59(10):1978-2006
    [42] Doi M, Edwards SF. The Theory of Polymer Dynamics. New York: Oxford University Press, 1986: 205
    [43] Cohen A. A Padéapproximant to the inverse Langevin function. Rheologica Acta, 1991,30(3):270-273
    [44] Kang MK, Huang R. A variational approach and finite element implementation for swelling of polymeric hydrogels under geometric constraints. Journal of Applied Mechanics, 2010,77(6):061004
  • 加载中
计量
  • 文章访问数:  666
  • HTML全文浏览量:  89
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-23
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回