EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非连续问题中单元分割的模板方法

王理想 文龙飞 肖桂仲 田荣

王理想, 文龙飞, 肖桂仲, 田荣. 非连续问题中单元分割的模板方法[J]. 力学学报, 2021, 53(3): 823-836. doi: 10.6052/0459-1879-20-360
引用本文: 王理想, 文龙飞, 肖桂仲, 田荣. 非连续问题中单元分割的模板方法[J]. 力学学报, 2021, 53(3): 823-836. doi: 10.6052/0459-1879-20-360
Wang Lixiang, Wen Longfei, Xiao Guizhong, Tian Rong. A TEMPLATED METHOD FOR PARTITIONING OF SOLID ELEMENTS IN DISCONTINUOUS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 823-836. doi: 10.6052/0459-1879-20-360
Citation: Wang Lixiang, Wen Longfei, Xiao Guizhong, Tian Rong. A TEMPLATED METHOD FOR PARTITIONING OF SOLID ELEMENTS IN DISCONTINUOUS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 823-836. doi: 10.6052/0459-1879-20-360

非连续问题中单元分割的模板方法

doi: 10.6052/0459-1879-20-360
基金项目: 1) 国家重点研发计划(2016YFB0201002);国家重点研发计划(2016YFB0201004);科学挑战专题(TZ2018002)
详细信息
    作者简介:

    2) 田荣, 研究员, 主要研究方向: 计算力学与高性能计算. E-mail: tian_rong@iapcm.ac.cn

    通讯作者:

    田荣

  • 中图分类号: TB115,O346.1

A TEMPLATED METHOD FOR PARTITIONING OF SOLID ELEMENTS IN DISCONTINUOUS PROBLEMS

  • 摘要: 扩展有限元法 (extended finite element method, XFEM) 因具有裂纹几何独立于模拟网格、裂纹扩展时无需网格重分重映、计算精度高等优点,成为裂纹分析的主流数值方法之一. 但该方法在工程实践中存在单元被裂纹分割的几何困难 —— 现有精确几何分割方法实现复杂、计算量大、鲁棒性差. 为克服这一困难, 本文提出一种基于单元水平集的模板分割方法, 用于非连续单元子剖分和数值积分. 首先, 遍历单元水平集值所有形态并建立标准单元分割模板库; 然后, 根据单元水平集值, 对非标准单元进行形态查询和模板插值; 最后, 套用标准单元分割模板实现单元高效分割和子剖分. 将该方法与常规XFEM、改进型XFEM进行结合,从而应用于孔洞、夹杂、裂纹等非连续问题分析中. 算例分析表明, 本文提出的模板分割方法具有较高计算精度. 由于不引入复杂几何操作, 该模板分割方法同时具有较高计算效率和鲁棒性, 故可为XFEM类方法在实际工程应用中提供有效支撑.

     

  • [1] 王勃, 张阳博, 左宏, 等. 压应力对压剪裂纹扩展的影响研究. 力学学报, 2019,51(3):845-851

    (Wang Bo, Zhang Yangbo, Zuo Hong, et al. Study on the influence of compressive stress on the compression shear crack propagation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):845-851 (in Chinese))
    [2] 卢广达, 陈建兵. 基于一类非局部宏-微观损伤模型的裂纹模拟. 力学学报, 2020,52(3):749-762

    (Lu Guangda, Chen Jianbing. Cracking simulation based on a nonlocal macro-meso-scale damage model. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):749-762 (in Chinese))
    [3] 郭树起. 应用边界积分法求圆形夹杂问题的解析解. 力学学报, 2020,52(1):73-81

    (Guo Shuqi. Exact solution of circular inclusion problems by a boundary integral method. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):73-81 (in Chinese))
    [4] 李聪, 牛忠荣, 胡宗军, 等. 三维切口/裂纹结构的扩展边界元法分析. 力学学报, 2020,52(5):1394-1408

    (Li Cong, Niu Zhongrong, Hu Zongjun, et al. Analysis of 3-D notched/cracked structures by using extended boundary element method. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1394-1408 (in Chinese))
    [5] 王理想, 唐德泓, 李世海, 等. 基于混合方法的二维水力压裂数值模拟. 力学学报, 2015,47(6):973-983

    (Wang Lixiang, Tang Dehong, Li Shihai, et al. Numerical simulation of hydraulic fracturing by a mixed method in two dimensions. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(6):973-983 (in Chinese))
    [6] Liu CQ, Prévost JH, Sukumar N. Modeling branched and intersecting faults in reservoir-geomechanics models with the extended finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 2019,43(12):2075-2089
    [7] Gordeliy E, Abbas S, Peirce A. Modeling nonplanar hydraulic fracture propagation using the XFEM: An implicit level-set algorithm and fracture tip asymptotics. International Journal of Solids and Structures, 2019,159:135-155
    [8] Liu H, Yang XG, Li SL, et al. A numerical approach to simulate 3D crack propagation in turbine blades. International Journal of Mechanical Sciences, 2020,171:105408
    [9] Babuska I, Melenk JM. The partition of unity method. International Journal for Numerical Methods in Engineering, 1997,40(4):727-758
    [10] Melenk JM, Babuska I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996,139(1-4):289-314
    [11] Strouboulis T, Babuska I, Copps K. The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 2000,181(1-3):43-69
    [12] Duarte CA, Babuska I, Oden JT. Generalized finite element methods for three-dimensional structural mechanics problems. Computers and Structures, 2000,77(2):215-232
    [13] Strouboulis T, Copps K, Babuska I. The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2001,190(32-33):4081-4193
    [14] Tian R. Extra-dof-free and linearly independent enrichments in GFEM. Computer Methods in Applied Mechanics and Engineering, 2013,266:1-22
    [15] 田荣. C$^{1}$连续型广义有限元格式. 力学学报, 2019,51(1):263-277

    (Tian Rong. A GFEM with C$^{1}$ continuity. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):263-277 (in Chinese))
    [16] Shi GH. Manifold method of material analysis// Transactions of the 9th Army Conference on Applied Mathematics and Computing, Minneapolis, Minnesota, 1991: 57-76
    [17] 徐栋栋, 郑宏, 杨永涛, 等. 多裂纹扩展的数值流形法. 力学学报, 2015,47(3):471-481

    (Xu Dongdong, Zheng Hong, Yang Yongtao, et al. Multiple crack propagation based on the numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):471-481 (in Chinese))
    [18] 刘登学, 张友良, 刘高敏. 基于适合分析T样条的高阶数值流形方法. 力学学报, 2017,49(1):212-222

    (Liu Dengxue, Zhang Youliang, Liu Gaomin. Higher-order numerical manifold method based on analysis-suitable T-spline. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):212-222 (in Chinese))
    [19] Zhang HH, Liu SM, Han SY, et al. Computation of T-stresses for multiple-branched and intersecting cracks with the numerical manifold method. Engineering Analysis with Boundary Elements, 2019,107:149-158
    [20] Hu MS, Rutqvist J. Numerical manifold method modeling of coupled processes in fractured geological media at multiple scales. Journal of Rock Mechanics and Geotechnical Engineering, 2020,12(4):667-681
    [21] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999,45(5):601-620
    [22] Mo?s N, Dolbow J. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999,46(1):131-150
    [23] Belytschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering, 2009,17(4):043001
    [24] Fries TP, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010,84(3):253-304
    [25] Saxby BA, Hazel AL. Improving the modified XFEM for optimal high-order approximation. International Journal for Numerical Methods in Engineering, 2020,121(3):411-433
    [26] Tian R, Wen LF. Improved XFEM —— An extra-dof free, well-conditioning, and interpolating XFEM. Computer Methods in Applied Mechanics and Engineering, 2015,285:639-658
    [27] Wen LF, Tian R. Improved XFEM: Accurate and robust dynamic crack growth simulation. Computer Methods in Applied Mechanics and Engineering, 2016,308:256-285
    [28] 田荣, 文龙飞. 改进型XFEM综述. 计算力学学报, 2016,33(4):469-477

    (Tian Rong, Wen Longfei. Recent progresses on improved XFEM. Chinese Journal of Computational Mechanics, 2016,33(4):469-477 (in Chinese))
    [29] 文龙飞, 王理想, 田荣. 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610

    (Wen Longfei, Wang Lixiang, Tian Rong. Accurate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese))
    [30] 王理想, 文龙飞, 王景焘, 等. 基于改进型XFEM的裂纹分析并行软件实现. 中国科学: 技术科学, 2018,48(11):1241-1258

    (Wang Lixiang, Wen Longfei, Wang Jingtao, et al. Implementations of parallel software for crack analyses based on the improved XFEM. Scientia Sinica Technologica, 2018,48(11):1241-1258 (in Chinese))
    [31] Tian R, Wen LF, Wang LX. Three-dimensional improved XFEM (IXFEM) for static crack problems. Computer Methods in Applied Mechanics and Engineering, 2019,343:339-367
    [32] 余天堂. 扩展有限单元法 — 理论、应用及程序. 北京: 科学出版社, 2014

    (Yu Tiantang. The Extended Finite Element Method—Theory, Application and Program. Beijing: Science Press, 2014 (in Chinese))
    [33] Khoei AR. Extended Finite Element Method: Theory and Applications. John Wiley & Sons, 2015
    [34] 庄茁, 柳占立, 成斌斌, 等. 扩展有限元法. 北京: 清华大学出版社, 2012

    (Zhuang Zhuo, Liu Zhanli, Cheng Binbin, et al. The Extended Finite Element Method. Beijing: Tsinghua University Press, 2012 (in Chinese))
    [35] Prabel B, Combescure A, Gravouil A, et al. Level set X-FEM non-matching meshes: Application to dynamic crack propagation in elastic-plastic media. International Journal for Numerical Methods in Engineering, 2007,69(8):1553-1569
    [36] Kudela L, Zander N, Kollmannsberger S, et al. Smart octrees: Accurately integrating discontinuous functions in 3D. Computer Methods in Applied Mechanics and Engineering, 2016,306:406-426
    [37] Scholz F, Jüttler B. Numerical integration on trimmed three-dimensional domains with implicitly defined trimming surfaces. Computer Methods in Applied Mechanics and Engineering, 2019,357:112577
    [38] 余天堂. 扩展有限元法的数值方面. 岩土力学, 2007,28(增):305-310

    (Yu Tiantang. Numerical aspects of the extended finite element method. Rock and Soil Mechanics, 2007,28(Supp):305-310 (in Chinese))
    [39] 江守燕, 杜成斌. 弱不连续问题扩展有限元法的数值精度研究. 力学学报, 2012,44(6):1005-1015

    (Jiang Shouyan, Du Chengbin. Study on numerical precision of extended finite element methods for modeling weak discontinuities. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(6):1005-1015 (in Chinese))
    [40] Mousavi SE, Sukumar N. Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 2010,199(49-52):3237-3249
    [41] Joulaian M, Hubrich S, Düster A. Numerical integration of discontinuities on arbitrary domains based on moment fitting. Computational Mechanics, 2016,57:979-999
    [42] Bui HG, Schillinger D, Meschke G. Efficient cut-cell quadrature based on moment fitting for materially nonlinear analysis. Computer Methods in Applied Mechanics and Engineering, 2020,366:113050
    [43] Ventura G. On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method. International Journal for Numerical Methods in Engineering, 2006,66(5):761-795
    [44] Abedian A, Düster A. Equivalent Legendre polynomials: Numerical integration of discontinuous functions in the finite element methods. Computer Methods in Applied Mechanics and Engineering, 2019,343:690-720
    [45] Sudhakar Y, Wall WA. Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering, 2013,258:39-54
    [46] Mousavi SE, Sukumar N. Generalized Duffy transformation for integrating vertex singularities. Computational Mechanics, 2010,45:127-140
    [47] Lv JH, Jiao YY, Rabczuk T, et al. A general algorithm for numerical integration of three-dimensional crack singularities in PU-based numerical methods. Computer Methods in Applied Mechanics and Engineering, 2020,363:112908
    [48] Cui T, Leng W, Liu HQ, et al. High-order numerical quadratures in a tetrahedron with an implicitly defined curved interface. ACM Transactions on Mathematical Software, 2020,46(1):1-18
    [49] Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge: Cambridge University Press, 1999
    [50] Mo?s N, et al. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 2003,192(28-30):3163-3177
    [51] Fries TP. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 2008,75(5):503-532
    [52] Belytschko T, Organ D, Krongauz Y. A coupled finite element -- element-free Galerkin method. Computational Mechanics, 1995,17:186-195
    [53] Rice JR. A path independent and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968,35(2):379-386
    [54] Li FZ, Shih CF, Needleman A. A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics, 1985,21(2):405-421
    [55] Erdogan F, Sih GC. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 1963,85(4):519-525
    [56] Tada H, Paris PC, Irwin R. The Stress Analysis of Cracks (Handbook). Del Research Corporation, Hellertown, Pennsylvania, 1973
  • 加载中
计量
  • 文章访问数:  484
  • HTML全文浏览量:  94
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回