[1] |
Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(30):10451-10453
|
[2] |
Geim AK. Graphene: Status and prospects. Science, 2009,324(5934):1530-1534
|
[3] |
Geim AK, Novoselov KS. Nanoscience and technology: A collection of reviews from nature journals. World Scientific, 2010: 11-19
|
[4] |
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004,306(5696):666-669
|
[5] |
Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B, 2004,108(52):19912-19916
|
[6] |
胡耀娟, 金娟, 张卉 等. 墨烯的制备, 功能化及在化学中的应用. 物理化学学报, 2010,26(8):2073-2086(Hu Yaojuan, Jin Juan, Zhang Hui, et al. Graphene: Synthesis, functionaliation and applications in chemistry. Acta Physico-Chimica Sinica, 2010,26(8):2073-2086 (in Chinese))
|
[7] |
徐秀娟, 秦金贵, 李振. 石墨烯研究进展. 化学进展, 2009,21(12):2559-2567(Xu Xiujuan, Qin Jingui, Li Zhen. Research advances of graphene. Progress in Chemistry, 2009,21(12):2559-2567 (in Chinese))
|
[8] |
Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005,438(7065):197-200
|
[9] |
Zhang YB, Tan YW, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005,438(7065):201-204
|
[10] |
Mak KF, Lee C, Hone J, et al. Atomically thin MoS$_{2}$: A new direct-gap semiconductor. Physical Review Letters, 2010,105(13):136805
|
[11] |
Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters, 2013,102(1):012111
|
[12] |
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS$_{2}$ transistors. Nature Nanotechnology, 2011,6(3):147-150
|
[13] |
Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014,9(5):372-377
|
[14] |
Chen YB, Chen C, Kealhofer R, et al. Black Arsenic: a layered semiconductor with extreme in-plane anisotropy. Advanced Materials, 2018,30(30):1800754
|
[15] |
Huang B, Clark G, Klein DR, et al. Electrical control of 2D magnetism in bilayer CrI$_{3}$. Nature Nanotechnology, 2018,13(7):544-548
|
[16] |
Xi X, Zhao L, Wang Z, et al. Strongly enhanced charge-density-wave order in monolayer NbSe$_{2}$. Nature Nanotechnology, 2015,10(9):765-769
|
[17] |
Tao J, Shen W, Wu S, et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano, 2015,9(11):11362-11370
|
[18] |
Lee S, Yang F, Suh J, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015,6(1):8573
|
[19] |
Liu K, Wu JQ. Mechanical properties of two-dimensional materials and heterostructures. Journal of Materials Research, 2016,31(7):832-844
|
[20] |
郑晓静. 关于极端力学. 力学学报, 2019,51(4):1266-1272(Zheng Xiaojing. Extreme mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1266-1272 (in Chinese))
|
[21] |
Akinwande D, Brennan CJ, Bunch JS, et al. A review on mechanics and mechanical properties of 2D materials - graphene and beyond. Extreme Mechanics Letters, 2017,13:42-77
|
[22] |
韩同伟, 贺鹏飞, 骆英 等. 石墨烯力学性能研究进展. 力学进展, 2011,41(3):279-293(Han Tongwei, He Pengfei, Luo Ying, et al. Research progress of the mechanical properties of graphene. Advances in Mechanics, 2011,41(3):279-293 (in Chinese))
|
[23] |
Pharr GM, Oliver WC. Measurement of thin film mechanical properties using nanoindentation. MRS Bulletin, 1992,17(7):28-33
|
[24] |
Chudoba T, Schwarzer N, Richter F. New possibilities of mechanical surface characterization with spherical indenters by comparison of experimental and theoretical results. Thin Solid Films, 1999, 355-356:284-289
|
[25] |
Chudoba T, Schwarzer N, Richter F, et al. Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter. Thin Solid Films, 2000, 377-378:366-372
|
[26] |
Chudoba T, Schwarzer N, Richter F. Determination of elastic properties of thin films by indentation measurements with a spherical indenter. Surface and Coatings Technology, 2000,127(1):9-17
|
[27] |
Saha R, Nix WD. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002,50(1):23-38
|
[28] |
Cao G, Gao H. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Progress in Materials Science, 2019,103:558-595
|
[29] |
Gao Y, Kim S, Zhou S, et al. Elastic coupling between layers in two-dimensional materials. Nature Materials, 2015,14(7):714-720
|
[30] |
Binnig G, Quate CF, Gerber C. Atomic force microscope. Physical Review Letters, 1986,56(9):930-933
|
[31] |
Gao Y. Force microscopy of two-dimensional materials. [PhD Thesis]. Atlanta: Georgia Insititute of Technology, 2017
|
[32] |
www.nanoworld.com
|
[33] |
Frank IW, Tanenbaum DM, van der Zande AM, et al. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 2007,25(6):2558-2561
|
[34] |
Cao GX, Ren YP. A paradox in mechanical property characterization of multilayer 2D materials based on existing indentation bending model. International Journal of Mechanical Sciences, 2020,187:105912
|
[35] |
Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008,321(5887):385-388
|
[36] |
Wan KT, Guo S, Dillard DA. A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films, 2003,425(1):150-162
|
[37] |
Komaragiri U, Begley MR, Simmonds JG. The mechanical response of freestanding circular elastic films under point and pressure loads. Journal of Applied Mechanics, 2005,72(2):203-212
|
[38] |
Lee GH, Cooper RC, An SJ, et al. High-strength chemical-vapor--deposited graphene and grain boundaries. Science, 2013,340(6136):1073-1076
|
[39] |
Wang G, Dai Z, Wang Y, et al. Measuring interlayer shear stress in bilayer graphene. Physical Review Letters, 2017,119(3):036101
|
[40] |
Wang G, Dai Z, Xiao J, et al. Bending of multilayer van der waals materials. Physical Review Letters, 2019,123(11):116101
|
[41] |
Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS$_{2}$. ACS Nano, 2011,5(12):9703-9709
|
[42] |
Castellanos-Gomez A, Poot M, Steele GA, et al. Elastic properties of freely suspended MoS$_{2}$ nanosheets. Advanced Materials, 2012,24(6):772-775
|
[43] |
Liu K, Yan Q, Chen M, et al. Elastic properties of chemical-vapor-deposited monolayer MoS$_{2}$, WS$_{2}$, and their bilayer heterostructures. Nano Letters, 2014,14(9):5097-5103
|
[44] |
Falin A, Cai Q, Santos EJG, et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 2017,8(1):15815
|
[45] |
Zhang R, Koutsos V, Cheung R. Elastic properties of suspended multilayer WSe$_{2}$. Applied Physics Letters, 2016,108(4):042104
|
[46] |
Chitara B, Ya'akobovitz A. Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale, 2018,10(27):13022-13027
|
[47] |
Wang JY, Li Y, Zhan ZY, et al. Elastic properties of suspended black phosphorus nanosheets. Applied Physics Letters, 2016,108(1):013104
|
[48] |
Sun Y, Pan J, Zhang Z, et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe$_{2}$. Nano Letters, 2019,19(2):761-769
|
[49] |
Li Y, Yu C, Gan Y, et al. Elastic properties and intrinsic strength of two-dimensional InSe flakes. Nanotechnology, 2019,30(33):335703
|
[50] |
Wang H, Sandoz-Rosado EJ, Tsang SH, et al. Elastic properties of 2D ultrathin Tungsten Nitride crystals grown by chemical vapor deposition. Advanced Functional Materials, 2019,29(31):1902663
|
[51] |
Lipatov A, Lu H, Alhabeb M, et al. Elastic properties of 2D Ti$_{3}$C$_{2}$T$_{x}$ MXene monolayers and bilayers. Science Advances, 2018, 4(6): eaat0491
|
[52] |
Guo L, Yan H, Moore Q, et al. Elastic properties of van der waals epitaxy grown bismuth telluride 2D nanosheets. Nanoscale, 2015,7(28):11915-11921
|
[53] |
Niu T, Cao G, Xiong C. Fracture behavior of graphene mounted on stretchable substrate. Carbon, 2016,109:852-859
|
[54] |
Niu T, Cao G, Xiong C. Indentation behavior of the stiffest membrane mounted on a very compliant substrate: Graphene on PDMS. International Journal of Solids and Structures, 2018, 132-133:1-8
|
[55] |
Chen J, Guo X, Tang Q, et al. Nanomechanical properties of graphene on poly(ethylene terephthalate) substrate. Carbon, 2013,55:144-150
|
[56] |
Zhou L, Wang Y, Cao G. Van der waals effect on the nanoindentation response of free standing monolayer graphene. Carbon, 2013,57:357-362
|
[57] |
Zhou L, Xue J, Wang Y, et al. Molecular mechanics simulations of the deformation mechanism of graphene monolayer under free standing indentation. Carbon, 2013,63:117-134
|
[58] |
Zhou L, Wang Y, Cao G. Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer. Journal of Physics$:$ Condensed Matter, 2013,25:475303
|
[59] |
Bj?rkman T, Gulans A, Krasheninnikov AV, et al. Van der waals bonding in layered compounds from advanced density-functional first-principles calculations. Physical Review Letters, 2012,108(23):235502
|
[60] |
Fan W, Zhu X, Ke F, et al. Vibrational spectrum renormalization by enforced coupling across the van der waals gap between MoS$_{2}$ and WS$_{2}$ monolayers. Physical Review B, 2015,92(24):241408
|
[61] |
Wang Y, Zhou X, Jin J, et al. Strain-dependent Raman analysis of the G* band in graphene. Physical Review B, 2019,100:241407
|
[62] |
Zhang Z, Zhang X, Wang Y, et al. Crack propagation and fracture toughness of graphene probed by raman spectroscopy. ACS Nano, 2019,13:10327-10332
|
[63] |
Wang Y, Wang Y, Xu C, et al. Domain-boundary independency of Raman spectra for strained graphene at strong interfaces. Carbon, 2018,134:37-42
|
[64] |
Lin ML, Chen T, Lu W, et al. Identifying the stacking order of multilayer graphene grown by chemical vapor deposition via Raman spectroscopy. Journal of Raman Spectroscopy, 2018,49:46-53
|
[65] |
Wu Z, Zhang X, Das A, et al. Step-by-step monitoring of CVD-graphene during wet transfer by Raman spectroscopy. RSC Advances, 2019,9:41447-41452
|
[66] |
Cellini F, Gao Y, Riedo E. Å-indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures. Scientific Reports, 2019,9(1):4075
|
[67] |
Song JH, Wang XD, Riedo E, et al. Elastic property of vertically aligned nanowires. Nano Letters, 2005,5(10):1954-1958
|
[68] |
Palaci I, Fedrigo S, Brune H, et al. Radial elasticity of multiwalled carbon nanotubes. Physical Review Letters, 2005,94(17):175502
|
[69] |
Lucas M, Mai W, Yang R, et al. Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Letters, 2007,7(5):1314-1317
|
[70] |
Lucas M, Leach AM, McDowell MT, et al. Plastic deformation of pentagonal silver nanowires: comparison between AFM nanoindentation and atomistic simulations. Physical Review B, 2008,77(24):245420
|
[71] |
Narayan J, Gupta S, Bhaumik A, et al. Q-carbon harder than diamond. MRS Communications, 2018,8(2):428-436
|
[72] |
任云鹏, 曹国鑫. 褶皱与晶界偶合作用对石墨烯断裂行为的影响. 力学学报, 2019,51(5):1381-1392(Ren Yunpeng, Cao Guoxin. Coupling effects of wrinkles and grain boundary on the fracture of graphene. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1381-1392 (in Chinese))
|
[73] |
Lin QY, Jing G, Zhou YB, et al. Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano, 2013 7(2):1171-1177
|
[74] |
Ren YP, Cao GX. Adhesive boundary effect on free-standing indentation characterization of chemical vapor deposition graphene. Carbon, 2019,153:438-446
|
[75] |
李东波, 刘秦龙, 张鸿驰 等. 基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究. 力学学报, 2019,51(5):1393-1402(Li Dongbo, Liu Qinlong, Zhang Hongchi, et al. Study on tensile fracture behavior and mechanical properties of GO based on molecular dynamics method. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1393-1402 (in Chinese))
|
[76] |
Rajasekaran S, Abild-Pedersen F, Ogasawara H, et al. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Physical Review Letters, 2013,111(8):085503
|
[77] |
Kvashnin AG, Chernozatonskii LA, Yakobson BI, et al. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Letters, 2014,14(2):676-681
|
[78] |
Martins LGP, Matos MJS, Paschoal AR, et al. Raman evidence for pressure-induced formation of diamondene. Nature Communications, 2017,8(1):96
|
[79] |
Bakharev PV, Huang M, Saxena M, et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nature Nanotechnology, 2020,15(1):59-66
|
[80] |
Gao Y, Cao TF, Cellini F, et al. Ultrahard carbon film from epitaxial two-layer graphene. Nature Nanotechnology, 2018,13(2):133-138
|
[81] |
Cellini F, Lavini F, Cao TF, et al. Epitaxial two-layer graphene under pressure: diamene stiffer than diamond. Flat Chem, 2018,10:8-13
|
[82] |
Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010,5(10):722-726
|
[83] |
Ponomarenko LA, Gorbachev RV, Yu GL, et al. Cloning of Dirac fermions in graphene superlattices. Nature, 2013,497(7451):594-597
|
[84] |
Geim AK, Grigorieva IV, Van der Waals heterostructures. Nature, 2013,499(7459):419-425
|
[85] |
Liu Y, Weiss NO, Duan X, et al. Van der Waals heterostructures and devices. Nature Reviews Materials, 2016,1(9):16042
|
[86] |
Yankowitz M, Ma Q, Jarillo-Herrero P, et al. Van der waals heterostructures combining graphene and hexagonal boron nitride. Nature Reviews Physics, 2019,1(2):112-125
|
[87] |
Jin CH, Regan EC, Yan A, et al. Observation of moiré excitons in WSe$_{2}$/WS$_{2}$ heterostructure superlattices. Nature, 2019,567(7746):76-80
|
[88] |
Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018,556(7699):80-84
|
[89] |
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018,556(7699):43-50
|
[90] |
李正, 杨庆生, 尚军军 等. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能. 力学学报, 2020,52(6):1700-1708(Li Zheng, Yang Qingsheng, Shang Junjun, et al. Piezoresistive sensing mechanism and piezoresistive performance of in-plane random stacked graphene composites. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1700-1708 (in Chinese))
|