[1] |
林杨挺, 胡森, 张建超, 等. 火星陨石有机碳的纳米离子探针分析:生物或非生物成因? 中国矿物岩石地球化学学会学术年会, 2013(Lin Yangting, Hu Sen, Zhang Jianchao, et al. Nano-ion probe analysis of organic carbon from Martian meteorites: biological or non-biological origin? Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry, 2013 (in Chinese))
|
[2] |
王利荣. 降落伞理论与应用:生物或非生物成因? 北京: 宇航工业出版社, 1997(Wang Lirong. Parachute Theory and Application Beijing: Aerospace Industry Press, 1997 (in Chinese))
|
[3] |
Jin ZY, Pasqualini S, Qin B. Experimental investigation of the effect of Reynolds number on flow structures in the wake of a circular parachute canopy. Acta Mechanica Sinica, 2014(3):361-369
|
[4] |
Peterson CW, Strickland JH, Higuchi H. The fluid dynamics of parachute inflation. Annual Review of Fluid Mechanics, 1961,28(1):361-387
|
[5] |
Bayle O, Lorenzoni L, Blancquaert T, et al. Exomars entry descent and landing demonstrator mission and design overview. European Space Agency, 2015
|
[6] |
Sengupta A, Witkowski A, Rowan J, et al. An overview of the Mars Science Laboratory Parachute Decelerator System// 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, IEEE, 2007
|
[7] |
余莉, 李水生, 明晓. 降落伞弹性现象对伞衣载荷的影响. 宇航学报, 2008,29(1):381-385(Yu Li, Li Shuisheng, Ming Xiao. Influence of the parachute elastic behavier on the canopy payload. Journal of Astronautics, 2008,29(1):381-385 (in Chinese))
|
[8] |
Rabinovitch J, Huang DZ, Borker R, et al. Towards a validated FSI computational framework for supersonic parachute deployments// AIAA Aviation 2019 Forum, 2019
|
[9] |
Xue XP, Koyama H, Nakamura Y. Numerical simulation on supersonic aerodynamic interference for rigid and flexible parachutes// AIAA Fluid Dynamics Conference and Exhibit, 2013
|
[10] |
O'Farrell C, Muppidi S, Brock JM. Development of models for disk-gap-band parachutes deployed supersonically in the wake of a slender body//2017 IEEE Aerospace Conference. IEEE, 2017
|
[11] |
Xue XP, Koyama H, Nakamura Y, et al. Effects of suspension line on flow field around a supersonic parachute. Aerospace Science and Technology, 2015,43:63-70
|
[12] |
贾贺, 姜璐璐, 薛晓鹏, 等. 超声速透气降落伞系统的气动干扰数值模拟研究. 航天返回与遥感, 2019,40(6):26-34(Jia He, Jiang Lulu, Xue Xiaopeng, et al. Numerical simulation of aerodynamic interaction of supersonic porosity parachutes. Spacecraft Recovery and Remote Sensing, 2019,40(6):26-34 (in Chinese))
|
[13] |
戴刚, 薛晓鹏. 超声速条件下伞盘模型的气动干扰数值研究. 航天返回与遥感, 2018,39(06):15-23(Dai Gang, Xue Xiaopeng. Numerical simulation of aerodynamic interaction of canopy disk models under supersonic conditions. Spacecraft Recovery and Remote Sensing, 2018,39(6):15-23 (in Chinese))
|
[14] |
Karagiozis K, Kamakoti R, Cirak F, et al. A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane. Journal of Fluids and Structures, 2011,27(2):175-192
|
[15] |
Yang X, Yu L, Liu M, et al. Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method. Chinese Journal of Aeronautics, 2020,33(6):1692-1702
|
[16] |
Dahal N, Fukiba K, Mizuta K, et al. Study of pressure oscillations in supersonic parachute. International Journal of Aeronautical and Space Sciences, 2018,19:24-31
|
[17] |
Yang X, Yu L, Zhao XS. Fluid-structure interaction study of the supersonic parachute using large-eddy simulation. Engineering Computations, 2018,35(1):157-168
|
[18] |
Huang DZ, Avery P, Farhat C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing// AIAA Sci-Tech 2020 Forum, 2020
|
[19] |
Yang X, Yu L, Nie S, et al. Aerodynamic performance of the supersonic parachute with material permeability. Journal of Industrial Textiles, 2019,50(6):812-829
|
[20] |
Johari H, Desabrais KJ. Vortex shedding in the near wake of a parachute canopy. Journal of Fluid Mechanics, 2005,536:185-207
|
[21] |
Barnhardt M, Drayna T, Nompelis I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions// 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, 2007
|
[22] |
Blazek J. Computational Fluid Dynamic Principles and Application. USA: Elsevier, 2015
|
[23] |
阎超. 计算流体动力学方法与应用. 北京: 北京航空航天大学出版社, 2006(Yan Chao. Computational Fluid Dynamics Methods and Applications. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006 (in Chinese))
|
[24] |
时北极, 何国威, 王士召. 基于滑移速度壁模型的复杂边界湍流大涡模拟. 力学学报, 2019,51(3):754-766(Shi Beiji, He Guowei, Wang Shizhao. Large-eddy simulation of flow with complex geometries by using the slip-wall model. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):754-766 (in Chinese))
|
[25] |
陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报, 2020,52(5):1314-1322(Chen Linfeng. A residual-based unresolved-scale finite element modelling for implicit large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1314-1322 (in Chinese))
|
[26] |
谢晨月, 袁泽龙, 王建春, 等. 基于人工神经网络的湍流大涡模拟方法. 力学学报, 2021,53(1):1-16(Xie Chenyue, Yuan Zelong, Wang Jianchun, et al. Artificial neural network-based subgrid-scale models for large-eddy simulation of turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):1-16 (in Chinese))
|
[27] |
张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论与应用. 北京: 清华大学出版社, 2014(Zhang Zhaoshun, Cui Guixiang, Xu Chunxiao. Theory and Application of Numerical Simulation of Turbulent Large Eddy. Beijing: Tsinghua University Press, 2014 (in Chinese))
|
[28] |
Hill DJ, Pantano C, Pullin DI. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock. Journal of Fluid Mechanics, 2006,557:29-61
|
[29] |
Kosovi$acute{c}$ B, Pullin DI, Samtaney R. Subgrid-scale modeling for large-eddy simulations of compressible turbulence. Physics of Fluids, 2002,14(4):1511-1522
|
[30] |
Misra A, Pullin DI. A vortex-based subgrid stress model for large-eddy simulation. Physics of Fluids, 1997,9(8):2443-2454
|
[31] |
Lundgren TS. Strained spiral vortex model for turbulent fine structure. Physics of Fluids, 1982,25(12):2193-2203
|
[32] |
Voelkl T, Pullin DI, Chan DC. A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Physics of Fluids, 2001,12(7):1810-1825
|
[33] |
Pullin DI. A vortex-based model for the subgrid flux of a passive scalar. Physics of Fluids, 2000,12(9):2311-2319
|
[34] |
Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. Journal of Computational Physics, 2002,178(1):81-117
|
[35] |
Hill DJ, Pullin DI. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. Journal of Computational Physics, 2004,194(2):435-450
|
[36] |
龚升, 吴锤结. 超音速探测器-刚性盘-缝-带型降落伞系统的大涡模拟研究. 应用数学和力学, 2021,42(3):233-247(Gong Sheng, Wu Chuijie. Large-eddy simulation study of the supersonic capsule/rigid disk-gap-band parachute system. Applied Mathematics and Mechanics, 2021,42(3):233-247 (in Chinese))
|