EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三时间尺度下非光滑电路中的簇发振荡及机理

毛卫红 张正娣 张苏珍

毛卫红, 张正娣, 张苏珍. 三时间尺度下非光滑电路中的簇发振荡及机理[J]. 力学学报, 2021, 53(3): 855-864. doi: 10.6052/0459-1879-20-331
引用本文: 毛卫红, 张正娣, 张苏珍. 三时间尺度下非光滑电路中的簇发振荡及机理[J]. 力学学报, 2021, 53(3): 855-864. doi: 10.6052/0459-1879-20-331
Mao Weihong, Zhang Zhengdi, Zhang Suzhen. BURSTING OSCILLATIONS AND ITS MECHANISM IN A NONSMOOTH SYSTEM WITH THREE TIME SCALES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 855-864. doi: 10.6052/0459-1879-20-331
Citation: Mao Weihong, Zhang Zhengdi, Zhang Suzhen. BURSTING OSCILLATIONS AND ITS MECHANISM IN A NONSMOOTH SYSTEM WITH THREE TIME SCALES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 855-864. doi: 10.6052/0459-1879-20-331

三时间尺度下非光滑电路中的簇发振荡及机理

doi: 10.6052/0459-1879-20-331
基金项目: 1) 国家自然科学基金资助项目(11872189)
详细信息
    作者简介:

    2) 张正娣, 教授, 主要研究方向: 非线性动力学. E-mail: dyzhang@ujs.edu.cn

    通讯作者:

    张正娣

  • 中图分类号: O322

BURSTING OSCILLATIONS AND ITS MECHANISM IN A NONSMOOTH SYSTEM WITH THREE TIME SCALES

  • 摘要: 实际工程应用中存在着诸如冲击、干摩擦、切换等非光滑因素,以此建立的动力学模型是包含非光滑项的系统. 目前针对非光滑动力系统的研究大多基于单一尺度或者两尺度, 而含有更多尺度的非光滑动力系统可能会存在更复杂的动力学现象. 本论文旨在探讨非光滑动力系统中的多尺度效应及其分岔机制.基于典型的非光滑蔡氏电路, 引入一个与系统固有频率存在量级差的周期变化的激励项, 同时通过选取适当的参数值,建立了一个三时间尺度耦合下的、含有两个分界面的四维分段线性电路系统模型, 研究了该系统存在的簇发振荡行为及其分岔机制. 首先,将对应快尺度与中间尺度的变量合并作为快变量, 将对应慢尺度的变量看作慢变量, 重新划分了快慢子系统,从而将三时间尺度耦合问题转化为两时间尺度耦合问题去分析. 然后根据双参数下的Hopf分岔情况, 对应于慢子流形的不同稳定性,给出了不同参数下系统存在的两种典型的簇发振荡行为. 最后, 基于快慢分析法, 结合转换相图以及慢子流形在非光滑分界面上的非光滑动力学行为的详细讨论, 分析了不同簇发振荡相互转化的分岔机制, 发现了一个新的簇发振荡的演化路径, 即由破坏性的擦边分岔诱导的簇发振荡.

     

  • [1] Abobda LT, Woafo P. Subharmonic and bursting oscillations of a ferromagnetic mass fixed on a spring and subjected to an AC electromagnet. Communications in Nonlinear Science and Numerical Simulation, 2012,17(7):3082-3091
    [2] Courbage M, Maslennikov OV, Nekorkin VI. Synchronization in time-discrete model of two electrically coupled spike-bursting neurons. Chaos, Solitons & Fractals, 2012,45(5):645-659
    [3] Pereda E, Cruz DMADL, Maas S, et al. Topography of EEG complexity in human neonates: Effect of the postmenstrual age and the sleep state. Neuroscience Letters, 2006,394(2):152-157
    [4] Bi QS. The mechanism of bursting phenomena in Belousov-Zhabotinsky (BZ) chemical reaction with multiple time scales. Science China Technological Sciences, 2010, doi: CNKI:SUN:JEXK.0.2010-02-041
    [5] Roussel C, Erneux T, Schiffmann SN, et al. Modulation of neuronal excitability by intracellular calcium buffering: From spiking to bursting. Cell Calcium, 2006,39(5):455-466
    [6] Mease KD. Multiple time-scales in nonlinear flight mechanics: Diagnosis and modeling. Applied Mathematics & Computation, 2005,164(2):627-648
    [7] Shilnikov A. Complete dynamical analysis of a neuron model. Nonlinear Dynamics, 2012,68(3):305-328
    [8] Yu Y, Zhang ZD, Han XJ. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system. Communications in Nonlinear Science and Numerical Simulation, 2018,56(3):380-391
    [9] Jia B, Wu Y, He D, et al. Dynamics of transitions from anti-phase to multiple in-phase synchronizations in inhibitory coupled bursting neurons. Nonlinear Dynamics, 2018,93(3):1599-1618
    [10] Zhan FB, Liu SQ, Zhang XH, et al. Mixed-mode oscillations and bifurcation analysis in a pituitary model. Nonlinear Dynamics, 2018,94:807-826
    [11] Izhikevich EM. Neural excitability, spiking and bursting. International Journal of Bifurcation & Chaos in Applied Sciences & Engineering, 2000,10(6):1171-1266
    [12] Schaffer WM, Bronnikova TV. Peroxidase-ROS interactions. Nonlinear Dynamics, 2012,68(3):413-430
    [13] Terman D. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM Journal on Applied Mathematics, 1991,51(5), doi: 10.1137/0151071
    [14] Rush ME, Rinzel J. The potassium a-current, low firing rates and rebound excitation in Hodgkin-Huxley models. Bulletin of Mathematical Biology, l995, 57(6):899-929
    [15] Izhikevich EM, Hoppensteadt F. Classification of bursting mappings. International Journal of Bifurcation & Chaos, 2004,14(11):3847-3854
    [16] Izhikevich EM, Desai NS, Walcott EC, et al. Bursts as a unit of neural information: Selective communication via resonance. Trends in Neurosciences, 2003,26(3):161-167
    [17] 蒲刚, 章定国, 黎亮. 考虑尺度效应的夹层楔形多孔梁动力学分析. 力学学报, 2019,51(6):1882-1896

    (Pu Gang, Zhang Dingguo, Li Liang. Dynamic analysis of sandwich tapered porous micro-beams considering size effect. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1882-1896 (in Chinese))
    [18] 张毅, 韩修静, 毕勤胜. 串联式叉型滞后簇发振荡及其动力学机制. 力学学报, 2019,51(1):228-236

    (Zhang Yi, Han Xiujing, Bi Qinsheng. Series-mode pitchfork-hysteresis bursting oscillations and their dynamical mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):228-236 (in Chinese))
    [19] Yu Y, Zhang ZD, Bi QS. Multistability and fast-slow analysis for Van der pol-Duffing oscillator with varying exponential delay feedback factor. Applied Mathematical Modelling, 2018,57:448-458
    [20] 李航, 申永军, 李向红, 等. Duffing 系统的主-亚谐联合共振. 力学学报, 2020,52(2):514-521

    (Li Hang, Shen Yongjun, Li Xianghong. Primary and subharmonic simultaneous resonance of Duffing oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):514-521 (in Chinese))
    [21] 秦志英, 陆启韶. 非光滑分岔的映射分析. 振动与冲击, 2009,28(6):79-81

    (Qin Zhiying, Lu Qishao. Map analysis for non-smooth bifurcations. Journal of Vibration and Shock, 2009,28(6):79-81 (in Chinese))
    [22] Li DH, Xie JH. Absolutely continuous invariant measure of a map from grazing-impact oscillators. Physics Letter A, 2015,379(10-11):901-906
    [23] Chin W, Ott E, Nusse HE, et al. Grazing bifurcations in impact oscillations. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1996,53(6):134-139
    [24] 张正娣, 刘亚楠, 李静, 等. 分段Filippov系统的簇发振荡及擦边运动机理. 物理学报, 2018,67(11):110501

    (Zhang Zhengdi, Liu Yanan, Li Jing, et al. Bursting oscillations and mechanism of sliding movement in piecewise Filippov system. Acta Physica Sinica, 2018,67(11):110501 (in Chinese))
    [25] Qu R, Li SL, Bi QS. Forced vibration of shape memory alloy spring oscillator and the mechanism of sliding bifurcation with dry friction. Advances in Mechanical Engineering, 2019,11(5):1-15
    [26] Chatzis MN, Chatzi EN, Triantafyllou SP. A discontinuous extended kalman filter for non-smooth dynamic problems. Mechanical Systems and Signal Processing, 2017,92:13-29
    [27] 张正娣, 毕勤胜. 非光滑系统的分岔. 力学进展, 2012: 93

    (Zhang Zhengdi, Bi Qinsheng. Bifurcation of non-smooth systems. Advances in Mechanics, 2012: 93(in Chinese))
    [28] Hu DH, Yan YZ, Xu XM, et al. Dynamics analysis of the hybrid powertrain under multi-frequency excitations with two time scales. AIP Advances, 2018,8(6):065212
    [29] 马新东, 姜文安, 张晓芳, 等. 一类三维非线性系统的复杂簇发振荡行为及其机理. 力学学报, 2020,52(6):1789-1799

    (Ma Xindong, Jiang Wenan, Zhang Xiaofang, et al. Complicated bursting behaviors as well as the mechanism of a three dimensional nonlinear system. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1789-1799 (in Chinese))
    [30] 夏雨, 毕勤胜, 罗超 等. 双频1:2激励下修正蔡氏振子两尺度耦合行为. 力学学报, 2018,50(2):362-372

    (Xia Yu, Bi Qinsheng, Luo Chao, et al. Behaviors of modified chua's oscillator two time scales under two excitations with frequency ratio at 1:2. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):362-372 (in Chinese))
    [31] 吴天一, 陈小可, 张正娣, 等. 非对称型簇发振荡吸引子结构及其机理分析. 物理学报, 2017,66(11):110501

    (Wu Tianyi, Chen Xiaoke, Zhang Zhengdi, et al. Structures of the asymmetrical bursting oscillation attractors and their bifurcation mechanisms. Acta Phys. Sin., 2017,66(11):35-45 (in Chinese))
  • 加载中
计量
  • 文章访问数:  522
  • HTML全文浏览量:  84
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回