[1] |
Moseley WC, Graham RE, Hughes JE. Aerodynamic stability characteristics of the apollo command module. NASA TN D-4688, 1968
|
[2] |
Danehy PM, Wilkes JA, Alderfer DW, et al. Planar laser-induced fluorescence (PLIF) investigation of hypersonic flowfields in a Mach 10 wind tunnel (invited). AIAA Paper 2006-344, 2006
|
[3] |
Combs CS, Clemens NT, Danehy PM. Development of Naphthalene PLIF for visualizing ablation products from a space capsule heat shield. AIAA Paper 2014-1152, 2014
|
[4] |
Branden MK, Gregory SE. Flow structure in the near wake of an axisymmetric supersonic base flow using Tomographic PIV. AIAA Paper 2017-3969, 2017
|
[5] |
Masatomi N, Hiroaki N. Wake stabilization time in a hypersonic pulsed facility. AIAA Paper 2004-2640, 2004
|
[6] |
Sakamoto MM, Erik M, Timothy W, et al. Experimental and numerical study of laminar and turbulent base flow on a spherical capsule. AIAA Paper 2009-783, 2009
|
[7] |
Brock JM, Subbareddy PK, Candler GV. Numerical simulation of hypersonic base flow. AIAA Paper 2011-4028, 2011
|
[8] |
Shingo Matsuyama, Hiroki Takayanagi, Kazuhisa Fujita, et al. Prediction of supersonic aerodynamics for a Mars Entry capsule using large eddy simulation. AIAA Paper 2014-2692, 2014
|
[9] |
Datta VG. The mean flowfield structure of a supersonic three-dimensional base flow. AIAA Paper 2008-573, 2008
|
[10] |
Sandberg RD, Fasel H. Direct numerical simulations of transitional supersonic base flows. AIAA Paper 2005-98, 2005
|
[11] |
Sivasubramanian J, Sandberg RD, Terzi DA, et al. Numerical investigation of transitional supersonic base flows with flow control. AIAA Paper 2006-479, 2006
|
[12] |
Simony F, Decky S, Guilleny P, et al. RANS-LES simulations of supersonic base flow. AIAA Paper 2006-898, 2006
|
[13] |
朱德华, 沈清, 王强, 等. 钝头体高超声速绕流底部失稳特征数值模拟. 力学学报, 2012,44(3):465-472(Zhu Dehua, Shen Qing, Wang Qiang, et al. Numerical study of the stability of hypersonic base flow over a blunt body and Apollo command module. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(3):465-472 (in Chinese))
|
[14] |
涂佳黄, 谭潇玲, 邓旭辉, 等. 平面剪切来流作用下串列布置三圆柱流致运动特性研究. 力学学报, 2019,51(3):787-802(Tu Jiahuang, Tan Xiaoling, Deng Xuhui, et al. Study of flow-induced motion characteristics of three tandem circular cylinders in planar shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):787-802 (in Chinese))
|
[15] |
涂佳黄, 谭潇玲, 杨枝龙, 等. 上游静止方柱尾流对下游方柱体尾激振动效应影响. 力学学报, 2019,51(5):1321-1335(Tu Jiahuang, Tan Xiaoling, Yang Zhilong, et al. Effect of wake induced-vibration responses of a square cylinder behind the stationary square cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1321-1335 (in Chinese))
|
[16] |
沈清, 朱德华. 高超声速尾迹流场稳定性数值研究. 力学学报, 2009,41(1):1-7(Shen Qing, Zhu Dehua. Numerical study of the stability of hypersonic wake. Chinese Journal of Theoretical and Applied Mechanics, 2009,41(1):1-7 (in Chinese))
|
[17] |
朱德华, 袁湘江, 沈清, 等. 钻石型粗糙元诱导高超声速转捩机理的直接数值模拟研究. 力学学报, 2015,47(3):381-388(Zhu Dehua, Yuan Xiangjiang, Shen Qing, et al. Direct numerical simulation of hypersonic transition mechanism induced by a diamond roughness element. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):381-388 (in Chinese))
|
[18] |
张涵信, 沈孟育. 计算流体力学: 差分方法的原理和应用. 北京: 国防工业出版社, 2003(Zhang Hanxin, Shen Mengyu. Computational Fluid Dynamics: Fundamentals and Applications of Finite Difference Methods. Beijing: National Defense Industry Press, 2003 (in Chinese))
|
[19] |
Shen Q, Li Q, Deng XG, et al. Numerical simulation of two-dimensional hypersonic boundary layer stability. AIAA Paper 98-2484, 1998
|
[20] |
Lyubimov A, Rusanov V. Gas flow past blunt bodies. NASA-TT-F715, 1973
|