EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

返回舱高雷诺数再入过程底部流动稳定性

朱德华 沈清 杨武兵

朱德华, 沈清, 杨武兵. 返回舱高雷诺数再入过程底部流动稳定性[J]. 力学学报, 2021, 53(3): 752-760. doi: 10.6052/0459-1879-20-318
引用本文: 朱德华, 沈清, 杨武兵. 返回舱高雷诺数再入过程底部流动稳定性[J]. 力学学报, 2021, 53(3): 752-760. doi: 10.6052/0459-1879-20-318
Zhu Dehua, Shen Qing, Yang Wubing. BASE FLOW STABILITY OF RETURN CAPSULE DURING REENTRY PROCESS WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 752-760. doi: 10.6052/0459-1879-20-318
Citation: Zhu Dehua, Shen Qing, Yang Wubing. BASE FLOW STABILITY OF RETURN CAPSULE DURING REENTRY PROCESS WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 752-760. doi: 10.6052/0459-1879-20-318

返回舱高雷诺数再入过程底部流动稳定性

doi: 10.6052/0459-1879-20-318
基金项目: 1) 国家自然科学基金(11872350)
详细信息
    作者简介:

    2) 朱德华, 高级工程师, 主要研究方向: 湍流, 流动稳定性, 高精度数值模拟方法等. E-mail: zhu-dh02@126.com

    通讯作者:

    朱德华

  • 中图分类号: O354.4

BASE FLOW STABILITY OF RETURN CAPSULE DURING REENTRY PROCESS WITH HIGH REYNOLDS NUMBER

  • 摘要: 返回舱高雷诺数再入过程中存在肩部高热流、底部阻力无法准确预测以及非定常振动等问题,解决此类问题的关键是分离和转捩等物理现象的准确识别. 本文采用大涡模拟方法细致刻画了返回舱类钝体外形在高雷诺数再入过程中的分离和转捩等物理现象,获得了返回舱底部流动形态以及稳定性特征. 从肩部剪切失稳、底部流动结构失稳、尾迹发展区以及远尾迹区的耦合失稳等多个角度分析了返回舱外形的底部流动失稳机制.研究发现, 返回舱类外形底部流动稳定性主要存在两类失稳模式即肩部剪切失稳模式以及底部流动结构失稳模式,二种模式存在耦合效应, 同时在远尾迹湍流区域存在类卡门涡街的振荡行为.这些认识为理解返回舱外部扰动因素对底部流动的作用机理及返回舱稳定性控制提供了基础理论支撑.

     

  • [1] Moseley WC, Graham RE, Hughes JE. Aerodynamic stability characteristics of the apollo command module. NASA TN D-4688, 1968
    [2] Danehy PM, Wilkes JA, Alderfer DW, et al. Planar laser-induced fluorescence (PLIF) investigation of hypersonic flowfields in a Mach 10 wind tunnel (invited). AIAA Paper 2006-344, 2006
    [3] Combs CS, Clemens NT, Danehy PM. Development of Naphthalene PLIF for visualizing ablation products from a space capsule heat shield. AIAA Paper 2014-1152, 2014
    [4] Branden MK, Gregory SE. Flow structure in the near wake of an axisymmetric supersonic base flow using Tomographic PIV. AIAA Paper 2017-3969, 2017
    [5] Masatomi N, Hiroaki N. Wake stabilization time in a hypersonic pulsed facility. AIAA Paper 2004-2640, 2004
    [6] Sakamoto MM, Erik M, Timothy W, et al. Experimental and numerical study of laminar and turbulent base flow on a spherical capsule. AIAA Paper 2009-783, 2009
    [7] Brock JM, Subbareddy PK, Candler GV. Numerical simulation of hypersonic base flow. AIAA Paper 2011-4028, 2011
    [8] Shingo Matsuyama, Hiroki Takayanagi, Kazuhisa Fujita, et al. Prediction of supersonic aerodynamics for a Mars Entry capsule using large eddy simulation. AIAA Paper 2014-2692, 2014
    [9] Datta VG. The mean flowfield structure of a supersonic three-dimensional base flow. AIAA Paper 2008-573, 2008
    [10] Sandberg RD, Fasel H. Direct numerical simulations of transitional supersonic base flows. AIAA Paper 2005-98, 2005
    [11] Sivasubramanian J, Sandberg RD, Terzi DA, et al. Numerical investigation of transitional supersonic base flows with flow control. AIAA Paper 2006-479, 2006
    [12] Simony F, Decky S, Guilleny P, et al. RANS-LES simulations of supersonic base flow. AIAA Paper 2006-898, 2006
    [13] 朱德华, 沈清, 王强, 等. 钝头体高超声速绕流底部失稳特征数值模拟. 力学学报, 2012,44(3):465-472

    (Zhu Dehua, Shen Qing, Wang Qiang, et al. Numerical study of the stability of hypersonic base flow over a blunt body and Apollo command module. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(3):465-472 (in Chinese))
    [14] 涂佳黄, 谭潇玲, 邓旭辉, 等. 平面剪切来流作用下串列布置三圆柱流致运动特性研究. 力学学报, 2019,51(3):787-802

    (Tu Jiahuang, Tan Xiaoling, Deng Xuhui, et al. Study of flow-induced motion characteristics of three tandem circular cylinders in planar shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):787-802 (in Chinese))
    [15] 涂佳黄, 谭潇玲, 杨枝龙, 等. 上游静止方柱尾流对下游方柱体尾激振动效应影响. 力学学报, 2019,51(5):1321-1335

    (Tu Jiahuang, Tan Xiaoling, Yang Zhilong, et al. Effect of wake induced-vibration responses of a square cylinder behind the stationary square cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1321-1335 (in Chinese))
    [16] 沈清, 朱德华. 高超声速尾迹流场稳定性数值研究. 力学学报, 2009,41(1):1-7

    (Shen Qing, Zhu Dehua. Numerical study of the stability of hypersonic wake. Chinese Journal of Theoretical and Applied Mechanics, 2009,41(1):1-7 (in Chinese))
    [17] 朱德华, 袁湘江, 沈清, 等. 钻石型粗糙元诱导高超声速转捩机理的直接数值模拟研究. 力学学报, 2015,47(3):381-388

    (Zhu Dehua, Yuan Xiangjiang, Shen Qing, et al. Direct numerical simulation of hypersonic transition mechanism induced by a diamond roughness element. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):381-388 (in Chinese))
    [18] 张涵信, 沈孟育. 计算流体力学: 差分方法的原理和应用. 北京: 国防工业出版社, 2003

    (Zhang Hanxin, Shen Mengyu. Computational Fluid Dynamics: Fundamentals and Applications of Finite Difference Methods. Beijing: National Defense Industry Press, 2003 (in Chinese))
    [19] Shen Q, Li Q, Deng XG, et al. Numerical simulation of two-dimensional hypersonic boundary layer stability. AIAA Paper 98-2484, 1998
    [20] Lyubimov A, Rusanov V. Gas flow past blunt bodies. NASA-TT-F715, 1973
  • 加载中
计量
  • 文章访问数:  446
  • HTML全文浏览量:  52
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回