EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征分裂有限元准隐格式的共轭传热整体耦合数值模拟方法

刘瑜 邓家钰 王成恩 苏红星

刘瑜, 邓家钰, 王成恩, 苏红星. 基于特征分裂有限元准隐格式的共轭传热整体耦合数值模拟方法[J]. 力学学报, 2021, 53(4): 986-997. doi: 10.6052/0459-1879-20-299
引用本文: 刘瑜, 邓家钰, 王成恩, 苏红星. 基于特征分裂有限元准隐格式的共轭传热整体耦合数值模拟方法[J]. 力学学报, 2021, 53(4): 986-997. doi: 10.6052/0459-1879-20-299
Liu Yu, Deng Jiayu, Wang Chengen, Su Hongxin. A MONOLITHIC METHOD FOR SIMULATING CONJUGATE HEAT TRANSFER VIA QUASI-IMPLICIT SCHEME OF CHARACTERISTIC-BASED SPLIT FINITE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 986-997. doi: 10.6052/0459-1879-20-299
Citation: Liu Yu, Deng Jiayu, Wang Chengen, Su Hongxin. A MONOLITHIC METHOD FOR SIMULATING CONJUGATE HEAT TRANSFER VIA QUASI-IMPLICIT SCHEME OF CHARACTERISTIC-BASED SPLIT FINITE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 986-997. doi: 10.6052/0459-1879-20-299

基于特征分裂有限元准隐格式的共轭传热整体耦合数值模拟方法

doi: 10.6052/0459-1879-20-299
基金项目: 1)装备预研共用技术项目(41423010103)
详细信息
    作者简介:

    2)王成恩, 教授, 主要研究方向: 航空发动机数值传热分析技术. E-mail: c.wang@sjtu.edu.cn

    通讯作者:

    王成恩

  • 中图分类号: O351

A MONOLITHIC METHOD FOR SIMULATING CONJUGATE HEAT TRANSFER VIA QUASI-IMPLICIT SCHEME OF CHARACTERISTIC-BASED SPLIT FINITE ELEMENT

  • 摘要: 共轭传热现象在科学和工程领域中大量存在. 随着计算能力的发展, 对共轭传热现象进行准确有效的数值模拟, 成为科学研究和工程设计上的重要挑战.共轭传热数值模拟的方法可以分为两大类: 分区耦合和整体耦合.本文采用有限元法对共轭传热问题进行整体耦合模拟. 固体传热求解采用标准的伽辽金有限元方法.流动求解采用基于特征分裂的有限元方法. 该方法是一种重要的求解流动问题的有限元方法, 可以使用等阶有限元. 该方法的准隐格式与其他格式相比, 具有时间步长大的特点. 将稳定项中的时间步长与全局时间步长分开, 改进了准隐格式的稳定性. 基于改进的特征分裂有限元方法的准隐格式, 发展了一种层流共轭传热数值模拟的整体耦合方法. 采用这种方法可以将流体计算域和固体计算域作为一个整体划分有限元网格, 并且所有变量都可以采用相同的插值函数, 从而有利于程序的实现. 通过对典型问题的模拟, 验证了这种方法的准确性. 本工作还研究了固体区域时间步长对定常共轭传热问题数值模拟收敛性的影响.

     

  • [1] Afzal A, Samee ADM, Razak RKA, et al. Steady and transient state analyses on conjugate laminar forced convection heat transfer. Archives of Computational Methods in Engineering, 2020,27:135-170
    [2] 冯琳娜, 李权, 黄永忠 等. 基于流固共轭传热的两相流动数值模拟及燃料子通道CHF 预测研究. 原子能科学技术, 2020,54(6):1092-1098

    (Feng Linna, Li Quan, Huang Yongzhong, et al. Subcooled boiling simulation and prediction of critical heat flux in fuel subchannel based on conjugate heat transfer. Atomic Energy Science and Technology, 2020,54(6):1092-1098 (in Chinese))
    [3] 周源远, 范小军, 李亮 等. 燃气轮机叶片前缘旋流冷却的热流固耦合数值研究. 西安交通大学学报, 2020,54(1):135-142

    (Zhou Yuanyuan, Fan Xiaojun, Li Liang, et al. Numerical research on the swirl cooling using thermal-fluid-structure coupled method for turbine blade leading edge. Journal of Xi'an Jiaotong University, 2019,45(9):1700-1712 (in Chinese))
    [4] Wang X, Xu HZ, Wang JH, et al. Multi-objective optimization of discrete film hole arrangement on a high pressure turbine end-wall with conjugate heat transfer simulations. International Journal of Heat and Fluid Flow, 2019,78:108428
    [5] 桂业伟, 刘磊, 代光月 等. 高超声速飞行器流-热-固耦合研究现状与软件开发. 航空学报, 2017,38(7):87-105.

    (Gui Yewei, Liu Lei, Dai Guangyue, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development. Acta Aeronautica, 2017,38(7):87-105(in Chinese))
    [6] H?tte F, Haupt C. Transient 3d conjugate heat transfer simulation of a rectangular GOX-GCH4 rocket combustion chamber and validation. Aerospace Science and Technology, 2020,105:106043
    [7] Das S, Panda A, Deen NG, et al. A sharp-interface immersed boundary method to simulate convective and conjugate heat transfer through highly complex periodic porous structures. Chemical Engineering Science, 2018,191:1-18
    [8] Saxena A, Saha V, Ng EYK. Skin temperature maps as a measure of carotid artery stenosis. Computers in Biology and Medicine, 2020,116:103548
    [9] Alsabery AI, Naganthran K, Azizul FM, et al. Numerical study of conjugate natural convection heat transfer of a blood filled horizontal concentric annulus. International Communications in Heat and Mass Transfer, 2020,114:104568
    [10] Dbouk T. A new technology for CPU chip cooling by concentrated suspension flow of non-colloidal particles. Applied Thermal Engineering, 2019,146:664-673
    [11] Prajapati YK. Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink. International Journal of Heat and Mass Transfer, 2019,137:1041-1052
    [12] Dorfman AS.  Conjugate Problems in Convective Heat Transfer. Boca Raton: CRC Press, 2010
    [13] Meng F, Banks JW, Henshaw WD, et al. A stable and accurate partitioned algorithm for conjugate heat transfer. Journal of Computational Physics, 2017,344:51-85
    [14] Pan XM, Lee CH, Choi JI. Efficient monolithic projection method for time-dependent conjugate heat transfer problems. Journal of Computational Physics, 2018,369:191-208
    [15] Errera MP, Duchaine F. Comparative study of coupling coefficients in dirichlet —— robin procedure for fluid —— structure aerothermal simulations. Journal of Computational Physics, 2016,312:218-234
    [16] Errera MP, Moretti R, Salem R, et al. A single stable scheme for steady conjugate heat transfer problems. Journal of Computational Physics, 2019,394:491-502
    [17] Giles MB. Stability analysis of numerical interface conditions in fluidstructure thermal analysis. International Journal for Numerical Methods in Fluids, 1997,25(4):421-436
    [18] Henshaw WD, Chand KK. A composite grid solver for conjugate heat transfer in fluid-structure systems. Journal of Computational Physics, 2009,228(10):3708-3741
    [19] Verstraete T, Scholl S. Stability analysis of partitioned methods for predicting conjugate heat transfer. International Journal of Heat and Mass Transfer, 2016,101:852-869
    [20] Scholl S, Janssens B, Verstraete T. Stability of static conjugate heat transfer coupling approaches using robin interface conditions. Computers & Fluids, 2018,172:209-225
    [21] He L, Oldfield MLG. Unsteady conjugate heat transfer modeling. Journal of Turbomachinery, 2011,133(3):031022
    [22] He L. Fourier spectral modelling for multi-scale aero-thermal analysis. International Journal of Computational Fluid Dynamics, 2013,27(2):118-129
    [23] Davalath J, Bayazitoglu Y. Forced convection cooling across rectangular blocks. Journal of Heat Transfer, 1987,109(2):321-328
    [24] Konar D, Sultan MA, Roy S. Numerical analysis of 2-d laminar natural convection heat transfer from solid horizontal cylinders with longitudinal fins. International Journal of Thermal Sciences, 2020,154:106391
    [25] Costa R, Nobrega JM, Clain S, et al. Very high-order accurate polygonal mesh finite volume scheme for conjugate heat transfer problems with curved interfaces and imperfect contacts. Computer Methods in Applied Mechanics and Engineering, 2019,357:112560
    [26] Lee S, Hwang W. Development of an efficient immersed-boundary method with sub grid-scale models for conjugate heat transfer analysis using large eddy simulation. International Journal of Heat and Mass Transfer, 2019,134:198-208
    [27] Wijayanta AT, Pranowo. A localized meshless approach using radial basis functions for conjugate heat transfer problems in a heat exchanger. International Journal of Refrigeration, 2020,110:38-46
    [28] 李桥忠, 陈木凤, 李游 等. 浸没边界-简化热格子Boltzmann 方法研究及其应用. 力学学报, 2019,51(2):392-404

    (Li Qiaozhong, Chen Mufeng, Li You, et al. Non-orthogonal multiple-relaxation-time lattice Boltzmann method for numerical simulation of thermal coupling with porous square cavity flow containing internal heat source. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):392-404 (in Chinese))
    [29] Mohebbi R, Lakzayi H, Rasam H. Numerical simulation of conjugate heat transfer in a square cavity consisting the conducting partitions by utilizing lattice Boltzmann method. Physica A: Statistical Mechanics and its Applications, 2020,546:123050
    [30] Spinelli GG, Celik B. Leveling out interface temperature for conjugate heat transfer problems. Computers & Fluids, 2020,210:104652
    [31] Blobner J, Hriber?ek M, Kuhn G. Dual reciprocity BEM-BDIM technique for conjugate heat transfer computations. Computer Methods in Applied Mechanics and Engineering, 2000,190(8):1105-1116
    [32] Misra D, Sarkar A. Finite element analysis of conjugate natural convection in a square enclosure with a conducting vertical wall. Computer Methods in Applied Mechanics and Engineering, 1997,141(3):205-219
    [33] Malatip A, Wansophark N, Dechaumphai P. Combined streamline upwind petrov galerkin method and segregated finite element algorithm for conjugate heat transfer problems. Journal of Mechanical Science and Technology, 2006,20(10):1741-1752
    [34] Rice JG, Schnipke RJ. An equal-order velocity-pressure formulation that does not exhibit spurious pressure modes. Computer Methods in Applied Mechanics and Engineering, 1986,58(2):135-149
    [35] Choi HG, Yoo JY. Streamline upwind scheme for the segregated formulation of the Navier-Stokes equation. Numerical Heat Transfer, Part B: Fundamentals, 1994,25(2):145-161
    [36] Malatip A, Wansophark N, Dechaumphai P. A second-order time accurate finite element method for analysis of conjugate heat transfer between solid and unsteady viscous flow. Journal of Mechanical Science and Technology, 2009,23(3):775-789
    [37] Malatip A, Wansophark N, Dechaumphai P. Fractional four-step finite element method for analysis of thermally coupled fluid-solid interaction problems. Applied Mathematics and Mechanics, 2012,33(1):99-116
    [38] Long T, Yang PY, Liu MB. A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems. International Journal of Mechanical Sciences, 2020,174:105558
    [39] Reddy JN.  The Finite Element Method in Heat Transfer and Fluid Dynamics, 3e. Boca Raton: CRC Press, 2010
    [40] Hughes TJ, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics: V.circumventing the Babu? ka-Brezzi condition: a stable petrov-galerkin formulation of the stokes problem accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 1986,59(1):85-99
    [41] Tezduyar T. Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 1991,28:1-44
    [42] Zienkiewicz OC, Taylor RL, Zhu JZ.  The Finite Element Method: Its Basis and Fundamentals,7e. London: Butterworth-Heinemann Press, 2013
    [43] Bevan RL, Boileau E, van Loon R, et al. A comparative study of fractional step method in its quasi-implicit, semiimplicit and fully-explicit forms for incompressible flows. International Journal of Numerical Methods for Heat & Fluid Flow, 2016,26(3/4):595-623
    [44] He L. Closely coupled fluid-solid interface method with moving-average for LES based conjugate heat transfer solution. International Journal of Heat and Fluid Flow, 2019,79:108440
    [45] Chen X, Han P. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms. International Journal of Heat and Fluid Flow, 2000,21(4):463-467
    [46] Li LF. A split-step finite-element method for incompressible Navier-Stokes equations with high-order accuracy up-to the boundary. Journal of Computational Physics, 2020,408:109274
    [47] Ghia U, Ghia K, Shin C. High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 1982,48(3):387-411
    [48] Denhamand MK, Patrick MA. Laminar flow over a down-stream facing step in a two-dimensional flow channel. Transactions of the Institution of Chemical Engineers, 1974,52:361-367
  • 加载中
计量
  • 文章访问数:  446
  • HTML全文浏览量:  89
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回