EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风剪切对风力机叶片气动性能及尾迹形状的影响

许波峰 朱紫璇 戴成军 蔡新 王同光 赵振宙

许波峰, 朱紫璇, 戴成军, 蔡新, 王同光, 赵振宙. 风剪切对风力机叶片气动性能及尾迹形状的影响[J]. 力学学报, 2021, 53(2): 362-372. doi: 10.6052/0459-1879-20-289
引用本文: 许波峰, 朱紫璇, 戴成军, 蔡新, 王同光, 赵振宙. 风剪切对风力机叶片气动性能及尾迹形状的影响[J]. 力学学报, 2021, 53(2): 362-372. doi: 10.6052/0459-1879-20-289
Xu Bofeng, Zhu Zixuan, Dai Chengjun, Cai Xin, Wang Tongguang, Zhao Zhenzhou. INFLUENCE OF WIND SHEAR ON AERODYNAMIC CHARACTERISTICS AND WAKE SHAPE OF WIND TURBINE BLADES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 362-372. doi: 10.6052/0459-1879-20-289
Citation: Xu Bofeng, Zhu Zixuan, Dai Chengjun, Cai Xin, Wang Tongguang, Zhao Zhenzhou. INFLUENCE OF WIND SHEAR ON AERODYNAMIC CHARACTERISTICS AND WAKE SHAPE OF WIND TURBINE BLADES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 362-372. doi: 10.6052/0459-1879-20-289

风剪切对风力机叶片气动性能及尾迹形状的影响

doi: 10.6052/0459-1879-20-289
基金项目: 1) 江苏风力发电工程技术中心开放基金(ZK19-03-01)和江苏省研究生科研与实践创新计划资助项目(SJCX20_0179)
详细信息
    作者简介:

    2) 许波峰, 副教授, 主要研究方向: 风力机空气动力学. E-mail: bfxu1985@hhu.edu.cn

    通讯作者:

    许波峰

  • 中图分类号: TB126

INFLUENCE OF WIND SHEAR ON AERODYNAMIC CHARACTERISTICS AND WAKE SHAPE OF WIND TURBINE BLADES

  • 摘要: 风力机通常运行在非定常工况中,其气动性能及尾迹会随着工况的变化而变化. 风剪切是风力机长期所处的环境,它会影响到叶片气动载荷、尾迹形状、总体性能等,分析风剪切作用下的叶片气动性能对风力机的设计有重要意义.本文采用一种时间步进自由涡尾迹(free vortex wake, FVW)方法,耦合FVW方法与风剪切模型,计算不同风剪切因子作用下叶片的气动力系数、推力以及风轮后的尾迹形状变化,研究尾迹形状变化对风轮旋转平面诱导速度及风力机叶片气动性能的影响. 结果表明:在风剪切入流条件下, 随着风剪切因子的增大,风力机的气动力系数随时间做周期性波动的幅度加剧, 推力的平均值逐渐减小,尾迹倾斜程度增大, 尾迹在轮毂下方的倾斜程度更明显;尾迹形状的变化使风轮平面轴向诱导速度因子分布不均匀,同时使风力机的总体性能降低且偏离较大;倾斜尾迹相比于对称尾迹对风轮平面处的诱导影响有明显差别, 波动幅值增大,气动力系数在波谷处的偏差比波峰处大. 尾迹越倾斜,风轮旋转平面处的载荷不对称性越明显.

     

  • [1] 温斌荣, 魏莎, 魏克湘 等. 风切变和塔影效应对风力机输出功率的影响. 机械工程学报, 2018,54(10):124-132

    (Wen Binrong, Wei Sha, Wei Kexiang, et al. Influences of wind shear and tower shadow on the power output of wind turbine. Journal of Mechanical Engineering. 2018,54(10):124-132 (in Chinese))
    [2] 吴斌, 董礼, 廖明夫 等. 水平轴风力机气动计算的叶素动量修正法. 机械科学与技术, 2011,30(12):2124-2128, 2134

    (Wu Bin, Dong Li, Liao Mingfu, et al. Amended BEM method for aerodynamic analysis of wind turbine. Mechanical Science and Technology for Aerospace Engineering. 2011,30(12):2124-2128, 2134 (in Chinese))
    [3] Holierhoek JG, de Vaal JB, van Zuijlen AH. et al. Comparing different dynamic stall models. Wind Energy, 2013,16(1):139-158
    [4] Liu X, Lu C, Liang S. et al. Improved dynamic stall prediction of wind turbine airfoils. Energy Procedia, 2019,158:1021-1026
    [5] Kabir IFSA, Ng EYK. Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect. Energy, 2017,120:518-536
    [6] Rajan A, Ponta FL. Aeroelastic analysis of the 3-dimensional interference patterns of wind-turbine rotors: The 3-D DRD-BEM model. Renewable Energy Focus, 2018,26:22-39
    [7] Pinto RLUD, Goncalves BPF. A revised theoretical analysis of aerodynamic optimization of horizontal-axis wind turbines based on BEM theory. Renewable Energy, 2017,105:625-636
    [8] 唐新姿, 王效禹, 袁可人 等. 风速不确定性对风力机气动力影响量化研究. 力学学报, 2020,52(1):51-59

    (Tang Xinzi, Wang Xiaoyu, Yuan Keren, et al. Quantitation study of influence of wind speed uncertainty on aerodynamic forces of wind turbine. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(1):51-59 (in Chinese))
    [9] Ali QS, Kim MH. Unsteady aerodynamic performance analysis of an airborne wind turbine under load varying conditions at high altitude. Energy Conversion and Management, 2020,210:112696
    [10] Wei Y, Ferreira CS, van Kuik G, et al. Verifying the blade element momentum method in unsteady, radially varied, axisymmetric loading using a vortex ring model. Wind Energy, 2017,20(2):269-288
    [11] Cai X, Gu RR, Pan P. et al. Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology. Energy Conversion and Management, 2016,112:146-156
    [12] Abbaspour M, Radmanesh AR, Soltani MR. Unsteady flow over offshore wind turbine airfoils and aerodynamic loads with computational fluid dynamic simulations. International Journal of Environmental Science and Technology, 2016,13(6):1525-1540
    [13] 许波峰, 刘冰冰, 冯俊恒 等. 自由涡尾迹方法中涡核尺寸对风力机气动计算的影响. 力学学报, 2019,51(5):1530-1537

    (Xu Bofeng, Liu Bingbing, Feng Junheng, et al. Influence of vortex core size on aerodynamic calculation of wind turbine in free vortex wake method. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(5):1530-1537 (in Chinese))
    [14] Xu BF, Liu BB, Cai X. et al. Accuracy of the aerodynamic performance of wind turbines using vortex core models in the free vortex wake method. Journal of Renewable and Sustainable Energy, 2019,11(5):053307
    [15] Shen X, Hu P, Chen JG. et al. The unsteady aerodynamics of floating wind turbine under platform pitch motion. Journal of Power and Energy, 2018,232(8):1019-1036
    [16] 林易, 李晔, 段磊. 漂浮式风力机非定常气动特性分析. 船舶与海洋工程, 2019,35(6):8-14

    (Lin Yi, Li Ye, Duan Lei. Analysis on the unsteady aerodynamics of floating wind turbines. Naval Architecture and Ocean Engineering. 2019,35(6):8-14 (in Chinese))
    [17] Lee H, Lee DJ. Wake impact on aerodynamic characteristics of horizontal axis wind turbine under yawed flow conditions. Renewable Energy, 2019,136:383-392
    [18] Kavari G, Tahani M, Mirhosseini M. Wind shear effect on aerodynamic performance and energy production of horizontal axis wind turbines with developing blade element momentum theory. Journal of Cleaner Production, 2019,219:368-376
    [19] 张旭耀, 杨从新, 李寿图 等. 风剪切来流下风力机流场特性与风轮气动载荷研究. 太阳能学报, 2019,40(11):3281-3288

    (Zhang Xuyao, Yang Congxin, Li Shoutu, et al. Study on flow field characteristics and aerodynamic loads of horizontal axis wind turbine in shear inflow. Acta Energiae Solaris Sinica. 2019,40(11):3281-3288 (in Chinese))
    [20] Shen X, Zhu XC, Du ZH. Wind turbine aerodynamics and loads control in wind shear flow. Energy, 2011,36(3):1424-1434
    [21] Chen JG, Shen X, Zhu XC. et al. A study on the capability of backward swept blades to mitigate loads of wind turbines in shear flow. Journal of Energy Resources Technology-Transactions of the ASME, 2019,141(8):081201
    [22] 王海鹏, 邱庆刚, 张博. 风剪切来流对风力机近尾迹流动特性影响. 热科学与技术, 2017,16(2):120-126

    (Wang Haipeng, Qiu Qinggang, Zhang Bo. Effects of wind shear on near wake characteristics of wind turbine blade. Journal of Thermal Science and Technology. 2017,16(2):120-126 (in Chinese))
    [23] 周文平, 唐胜利, 吕红. 风剪切和动态来流对水平轴风力机尾迹和气动性能的影响. 中国电机工程学报, 2012,32(14):122-127

    (Zhou Wenping, Tang Shengli, Lü Hong. Effect of transient wind shear and dynamic inflow on the wake structure and performance of horizontal axis wind turbine. Proceedings of the CSEE. 2012,32(14):122-127 (in Chinese))
    [24] Sezer-Uzol N, Uzol O. Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor. Wind Energy, 2013,16(1):1-17
    [25] Shaler K, Kecskemety KM, McNamara JJ. Benchmarking of a free vortex wake model for prediction of wake interactions. Renewable Energy, 2019,136:607-620
    [26] Su KY, Bliss D. A numerical study of tilt-based wake steering using a hybrid free-wake method. Wind Energy, 2020,23(2):258-273
    [27] Jeong MS, Kim SW, Lee I. et al. Wake impacts on aerodynamic and aeroelastic behaviors of a horizontal axis wind turbine blade for sheared and turbulent flow conditions. Journal of Fluids and Structures, 2014,50:66-78
    [28] Xu BF, Wang TG, Yuan Y. et al. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2015,373(2035):20140080
    [29] 左潞, 唐植懿, 许波峰 等. 涡模型对风力机气动特性的影响研究. 可再生能源, 2016,34(10):1491-1496

    (Zuo Lu, Tang Zhiyi, Xu Bofeng, et al. Investigation of effects of vortex models on wind turbine aerodynamic characteristics. Renewable Energy Resources. 2016,34(10):1491-1496 (in Chinese))
    [30] Xu BF, Wang TG, Yuan Y. et al. A simplified free vortex wake model of wind turbines for axial steady conditions. Applied Sciences, 2018,8(6):866
    [31] Elgammi M, Sant T. A new stall delay algorithm for predicting the aerodynamics loads on wind turbine blades for axial and yawed conditions. Wind Energy, 2017,20(9):1645-1663
    [32] 李国强, 张卫国, 陈立 等. 风力机叶片翼型动态试验技术研究. 力学学报, 2018,50(4):751-765

    (Li Guoqiang, Zhang Weiguo, Chen Li, et al. Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanics. 2018,50(4):751-765 (in Chinese))
    [33] Bhagwat M, Leishman JG. Stability, consistency and convergence of time marching free-vortex rotor wake algorithms. Journal of the American Helicopter Society, 2001,46(1):59-71
    [34] Gupta S, Leishman JG. Accuracy of the induced velocity from helicoidal vortices using straight-line segmentation. AIAA Journal, 2005,43(1):29-40
    [35] Hand MM, Simms DA, Fingersh LJ, et al. Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaign. Technical Report NREL/TP-500-29955, National Renewable Energy Laboratory, Golden, 2001
    [36] Wang TG, Wang L, Zhong W. et al. Large-scale wind turbine blade design and aerodynamic analysis. Chinese Science Bulletin, 2012,57(1):1-7
    [37] Werapun W, Tirawanichakul Y, Waewsak J. Wind shear coefficients and their effect on energy production. Energy Procedia, 2017,138:1061-1066
    [38] Okorie ME, Inambao F, Chiguvare Z. Evaluation of wind shear coefficients, surface roughness and energy yields over inland locations in Namibia. Procedia Manufacturing, 2016. 7:630-638
  • 加载中
计量
  • 文章访问数:  838
  • HTML全文浏览量:  115
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-16
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回