EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

向列相溶致液晶旋转黏度研究

陈凌峰 于佳佳 李友荣 黄映洲 李谷元

陈凌峰, 于佳佳, 李友荣, 黄映洲, 李谷元. 向列相溶致液晶旋转黏度研究[J]. 力学学报, 2021, 53(4): 998-1007. doi: 10.6052/0459-1879-20-272
引用本文: 陈凌峰, 于佳佳, 李友荣, 黄映洲, 李谷元. 向列相溶致液晶旋转黏度研究[J]. 力学学报, 2021, 53(4): 998-1007. doi: 10.6052/0459-1879-20-272
Chen Lingfeng, Yu Jiajia, Li Yourong, Huang Yingzhou, Li Guyuan. STUDY ON ROTATIONAL VISCOSITY OF NEMATIC LYOTROPIC LIQUID CRYSTAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 998-1007. doi: 10.6052/0459-1879-20-272
Citation: Chen Lingfeng, Yu Jiajia, Li Yourong, Huang Yingzhou, Li Guyuan. STUDY ON ROTATIONAL VISCOSITY OF NEMATIC LYOTROPIC LIQUID CRYSTAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 998-1007. doi: 10.6052/0459-1879-20-272

向列相溶致液晶旋转黏度研究

doi: 10.6052/0459-1879-20-272
基金项目: 1)国家自然科学基金青年科学基金(51806025);重庆市留学人员创业创新支持计划(cx2019053);油气藏地质及开发工程国家重点实验室(西南石油大学)开放基金(PLN2020-8);中央高校基本科研业务费(2018CDXYDL0001)
详细信息
    作者简介:

    2)于佳佳, 副教授, 主要研究方向: 复杂流体流动传热及控制. E-mail: yujiajia@cqu.edu.cn

    通讯作者:

    于佳佳

  • 中图分类号: O357/O373

STUDY ON ROTATIONAL VISCOSITY OF NEMATIC LYOTROPIC LIQUID CRYSTAL

  • 摘要: 溶致液晶具有良好的生物相容性、无毒性、生物降解性以及光学、电磁学各向异性等, 在细胞相互作用、神经刺激传递、脂肪吸收、药物智能输运等生命活动研究、医药工程和液晶显示等领域有广泛应用. 本文采用旋转磁场法测得溶致液晶日落黄在不同温度和溶液浓度下向列相时旋转黏度, 并结合溶致液晶分子自组装过程, 理论分析了溶致液晶向列相旋转黏度随温度和溶液浓度的变化规律. 研究结果表明: 溶致液晶旋转黏度与液晶分子自组装柱状体平均长度的平方呈正比增大关系, 随溶液浓度的增大而增大, 随温度的升高表现出指数减小的规律. 构建了与向列相溶致液晶温度和浓度相关的旋转黏度经验表达式, 经验表达式计算结果与实验值吻合较好, 最大误差仅为18.56${\%}$. 提出采用旋转流变仪间接获得溶致液晶剪切能的新方法, 溶致液晶剪切能随溶液浓度的增大而增大, 但在实验温度范围内, 溶致液晶剪切能几乎不随温度而改变. 利用旋转流变仪间接获得的溶致液晶剪切能与报道的利用X-Ray检测所得的结果之间最大误差仅为3${\%}$. 成功地利用了液晶分子自组装能力随温度的变化规律来研究柱状体长径比对旋转黏度的影响规律, 创新地提出了"一步法"测量研究, 大大减少相关实验研究的成本和复杂性.

     

  • [1] 谢毓章. 液晶物理学. 北京: 科学出版社, 1988

    (Xie Yuzhang. The Physics of Liquid Crystals. Beijing: Science Press, 1988 (in Chinese))
    [2] Goldburg WI. Dynamic light scattering. American Journal of Physics, 1999,67(12):1152-1160
    [3] Lee H, Yang S, Lee JH, et al. Improvement of the relaxation time and the order parameter of nematic liquid crystal using a hybrid alignment mixture of carbon nanotube and polyimide. Applied Physics Letters, 2014,104(19):191601
    [4] Nazarenko VG, Boiko OP, Anisimov MI, et al. Lyotropic chromonic liquid crystal semiconductors for water-solution processable organic electronics. Applied Physics Letters, 2010,97(26):263305
    [5] Tang MJ, Ding S, Zhou CR, et al. Liquid crystal biomaterials. Chemical World, 2010,51(12):756-760
    [6] 罗丙红, 周长忍, 鲁路 等. 液晶种类对聚氨酯液晶复合膜血液相容性的影. 功能高分子学报, 2009,22(2):119-123

    (Luo Binghong, Zhou Changren, Lu Lu, et al. Effect of different kinds of liquid crystals on the blood compatibility of PCU-liquid crystal composite membranes. Journal of Functional Polymers, 2009,22(2):119-123(in Chinese))
    [7] 贵丽红, 丰景义, 史子谦 等. 向列相液晶旋转黏度测试方法的研究. 液晶与显示, 2013,28(4):527-533

    (Gui Lihong, Feng Jingyi, Shi Ziqian, et al. Method of measuring nematic LC rotational viscosity. Chinese Journal of Liquid Crystals and Displays, 2013,28(4):527-533 (in Chinese))
    [8] 刘赵淼, 杨刚, 逄燕 等. 不同心排出量下主动脉瓣血流动力学的PIV实验研究. 力学学报, 2019,51(6):1918-1926

    (Liu Zhaomiao, Yang Gang, Pang Yan, et al. Experimental study on hemodynamics of aortic valve under varied cardiac output using PIV. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1918-1926 (in Chinese))
    [9] 魏进家, 刘飞, 刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展. 力学学报, 2019,51(4):971-990

    (Wei Jinjia, Liu Fei, Liu Dongjie. Progress in molecular dynamics simulations of surfactant solution for turbulent drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):971-990 (in Chinese))
    [10] 万征, 孟达. 基于t准则的各向异性强度准则及变换应力法. 力学学报, 2020,52(5):1519-1537

    (Wan Zheng, Meng Da. Anisotropic strength criterion based on t criterion and the transformation stress method. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1519-1537 (in Chinese))
    [11] 彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展. 力学学报, 2020,52(5):1221-1234

    (Peng Xiangfeng, Li Luxian. State of the art of constitutive relations of hyperelastic materials. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1221-1234 (in Chinese))
    [12] Gerber PR. Measurement of the rotational viscosity of nematic liquid crystals. Applied Physics A-Materials Science & Processing, 1981,26(3):139-142
    [13] Pashkovsky EE, Litvina TG. Influence of polymer molecules on the rotational viscosity and backflow effect at the bend Freedericksz transition in nematic liquid crystals. Macromolecules, 1995,28(6):1818-1824
    [14] Denolf K, Cordoyiannis G, Glorieux C, et al. Effect of nonmesogenic impurities on the liquid crystalline phase transitions of octylcyanobiphenyl. Physical Review E, 2007,76(5):051702
    [15] Oswald P, Scalliet C. Measurements of the dielectric and viscoelastic constants in mixtures of 4,4'-n-octyl-cyanobiphenyl and biphenyl. Physical Review E, Statistical Nonlinear & Soft Matter Physics, 2014,89(3):032504
    [16] Yadav G, Pathak G, Agrahari K, et al. Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles. Chinese Physics B, 2019,28(3):34209
    [17] Horowitz VR, Janowitz LA, Modic AL, et al. Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye. Physical Review E, 2005,72(4):041710
    [18] Park HS, Kang SW, Tortora L, et al. Self-assembly of lyotropic chromonic liquid crystal sunset yellow and effects of ionic additives. The Journal of Physical Chemistry B, 2008,112(51):16307-16319
    [19] Zhang B, Kitzerow HS. Influence of proton and salt concentration on the chromonic liquid crystal phase diagram of disodium cromoglycate solutions: Prospects and limitations of a host for DNA nanostructures. Journal of Physical Chemistry B, 2016,120(12):3250-3256
    [20] Osipov M, Terentjev EM. The Molecular theory for the viscosity of nematic and smectic C liquid crystals. Molecular Crystals and Liquid Crystals, 1991,198:429-435
    [21] Zhou S, Neupane K, Nastishin YA, et al. Elasticity, viscosity and orientational fluctuations of a lyotropic chromonic nematic liquid crystal disodium cromoglycate. Soft Matter, 2014,10(34):6571-6581
    [22] Zhou S, Nastishin YA, Omelchenko MM, et al. Elasticity of lyotropic chromonic liquid crystals probed by director reorientation in a magnetic field, Physical Review Letters, 2012,109(3):037801
    [23] 韩式方 . 液晶高分子各向异性黏弹流体本构方程理论. 力学学报, 2001,33(5):588-600

    ( Han Shifang. Constitutive equation for liquid crystalline polymer anisotropic visc-elastic fluid. Chinese Journal of Theoretical and Applied Mechanics, 2001,33(5):588-600 (in Chinese))
    [24] 刘春波, 关炎芳, 辻知宏, 等. 电场作用下向列相液晶指向矢与流动的耦合机理. 应用力学学报, 2012,29(3):262-268

    (Liu Chunbo, Guan Yanfang, Tsuji Tomohiro, et al, Coupling mechanism of electric field induced nematic liquid crystal director and backflow. Chinese Journal of Applied Mechanics, 2012,29(3):262-268 (in Chinese))
    [25] Belyaev VV. Physical methods for measuring the viscosity coefficients of nematic liquid crystals. Physics-Uspekhi, 2001,44(3):255
    [26] 徐继润, 徐俊杰, 丁仕强. 旋转流变仪测量空间的探讨. 中国过滤与分离, 2010,20(1):1-3

    (Xu Jirun, Xu Junjie, Ding Shiqiang, Discussion of spatial-measurement with rotation rheometers. China Filtration & Separation, 2010,20(1):1-3 (in Chinese))
    [27] 范天佑. Poisson括号方法及其在准晶、液晶和一类软物质中的应用. 力学学报, 2013,45(4):548-559

    (Fan Tianyou, Poisson bracket method and its applications to quasicrystals, liquid crystals and a class of soft matter. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(4):548-559 (in Chinese))
    [28] 史铁钧, 吴德峰. 高分子流变学基础. 北京: 化学工业出版社, 2009

    (Shi Tiejun, Wu Defeng. Fundamentals of Polymer Rheology. Beijing: Chemical Industry Press, 2009 (in Chinese))
    [29] Tschierske C. Development of structural complexity by liquid crystal selfassembly. Angewandte Chemie-International Edition, 2013,52(34):8828-8878
    [30] Hassanfiroozi A, Huang YP. Effect of noncovalent interaction of a polymer dispersed liquid crystal for interferometric applications over a range of low frequencies. ACS Applied Polymer Materials, 2019,1(11):2840-2845
    [31] Zhou S, Cervenka AJ, Lavrentovich OD. Ionic-content dependence of viscoelasticity of the lyotropic chromonic liquid crystal sunset yellow. Physical Review E, 2014,90(4):042505
    [32] Joshi L, Kang SW, Agra-Kooijman DM, et al. Concentration, temperature, and pH dependence of sunset-yellow aggregates in aqueous solutions: An X-ray investigation. Physical Review E, 2009,80(4):041703
    [33] Meyer BR. Macroscopic phenomena in nematic polymers. Molecular Crystals And Liquid Crystals, 1984,106(3-4):414-414
    [34] Orr R, Pethrick RA. Viscosity coefficients of nematic liquid crystals: I. Oscillating plate viscometer measurements and rotational viscosity measurements: K15$^{+}$. Liquid Crystals, 2011,38(9):1169-1181
    [35] Wang L, Augustine MU, Quan L. Nature-inspired emerging chiral liquid crystal nanostructures: From molecular self-assembly to DNA mesophase and nanocolloids. Advanced Materials, 2020,32(41):2586536
    [36] Dark ML, Moore MH, Shenoy DK, et al. Rotational viscosity and molecular structure of nematic liquid crystals. Liquid Crystals, 2006,33(1):67-73
    [37] Patnaik AS, Goldfarb JL. Continuous activation energy representation of the arrhenius equation for the pyrolysis of cellulosic materials: Feed corn stover and cocoa shell biomass. Cellulose Chemistry And Technology, 2016,50(2):311-320
    [38] Sierra CA. Temperature sensitivity of organic matter decomposition in the Arrhenius equation: Some theoretical considerations. Biogeochemistry, 2018,108(1-3):1-15
  • 加载中
计量
  • 文章访问数:  761
  • HTML全文浏览量:  156
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回