[1] |
Floreano D, Wood RJ. Science, technology and the future of small autonomous drones. Nature, 2015,521(7553):460-466
|
[2] |
Chin YW, Kok JM, Zhu YQ, et al. Efficient flapping wing drone arrests high-speed flight using post-stall soaring. Science Robotics, 2020, 5(44): eaba2386
|
[3] |
Croon G. Flapping wing drones show off their skills. Science Robotics, 2020, 5(44): eabd0233
|
[4] |
Lian Y, Shyy W, Viieru D. et al. Membrane wing aerodynamics for micro air vehicles. Progress in Aerospace Sciences, 2003,39(6-7):425-465
|
[5] |
Lissaman PBS. Low-Reynolds-number airfoils. Annual Review of Fluid Mechanics, 2003,15(1):223-239
|
[6] |
Ma KY, Chirarattananon P, Fuller SB. et al. Controlled flight of a biologically inspired, insect-scale robot. Science, 2013,340(6132):603-607
|
[7] |
Di Luca M, Mintchev S, Su Y. et al. A bioinspired Separated Flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones. Science Robotics, 2020, 5(38): eaay8533
|
[8] |
展京霞, 王晋军. 仿雨燕机翼柔性对纵向气动特性的影响. 实验流体力学, 2010,24(2):1-4(Zhan Jingxia, Wang Jinjun. Study on the effect of the flexibility of common swift's wing on longitudinal aerodynamics. Journal of Experiments in Fluid Mechanics. 2010,24(2):1-4 (in Chinese))
|
[9] |
Muir RE, Arredondo-Galeana A, Viola IM. The leading-edge vortex of swift wing-shaped delta wings. Royal Society Open Science, 2017,4(8):170077
|
[10] |
Videler JJ, Stamhuis EJ, Povel GDE. Leading-edge vortex lifts swifts. Science, 2004,306(5703):1960-1962
|
[11] |
Lentink D, Müller UK, Stamhuis EJ. et al. How swifts control their glide performance with morphing wings. Nature, 2007,446(7139):1082-1085
|
[12] |
Van Bokhorst E, De Kat R, Elsinga GE. et al. Feather roughness reduces flow separation during low Reynolds number glides of swifts. Journal of Experimental Biology, 2015,218(20):3179-3191
|
[13] |
Henningsson P, Hedenstr?m A, Bomphrey RJ. Efficiency of lift production in flapping and gliding flight of swifts. PloS One, 2014,9(2):e90170
|
[14] |
Matloff LY, Chang E, Feo TJ. et al. How flight feathers stick together to form a continuous morphing wing. Science, 2020,367(6475):293-297
|
[15] |
Lentink D, De Kat R. Gliding swifts attain laminar flow over rough wings. PLoS One, 2014,9(6):e99901
|
[16] |
Wang JJ, Wang Z. Experimental investigations on leading-edge vortex structures for flow over non-slender delta wings. Chinese Physics Letters, 2008,25(7):2550-2553
|
[17] |
Wang JJ, Liu Y. Experimental study on lift characteristics for flow over flexible cropped delta wings. Journal of Aircraft, 2008,45(6):2158-2161
|
[18] |
Verhaagen NG. Leading-edge radius effects on aerodynamic characteristics of 50-degree delta wings. Journal of Aircraft, 2012,49(2):521-531
|
[19] |
Miau JJ, Kuo KT, Liu WH. et al. Flow developments above 50-deg sweep delta wings with different leading-edge profiles. Journal of Aircraft, 1995,32(4):787-794
|
[20] |
Taylor G, Wang Z, Vardaki E. et al. Lift enhancement over flexible nonslender delta wings. AIAA Journal, 2007,45(12):2979-2993
|
[21] |
Gursul I, Wang Z, Vardaki E. Review of flow control mechanisms of leading-edge vortices. Progress in Aerospace Sciences, 2007,43(7-8):246-270
|
[22] |
Gursul I, Gordnier R, Visbal M. Unsteady aerodynamics of nonslender delta wings. Progress in Aerospace Sciences, 2005,41(7):515-557
|
[23] |
Traub LW, Moeller B, Rediniotis O. Low-Reynolds-number effects on delta-wing aerodynamics. Journal of Aircraft, 1998,35(4):653-656
|
[24] |
Woodiga SA, Liu T. Skin friction fields on delta wings. Experiments in Fluids, 2009,47(6):897-911
|
[25] |
Wang JJ, Lu SF. Effects of leading-edge bevel angle on the aerodynamic forces of a non-slender 50$^circ$ delta wing. The Aeronautical Journal, 2005,109(1098):403-407
|
[26] |
Wang J, Zhan J. New pair of leading-edge vortex structure for flow over delta wing. Journal of Aircraft, 2005,42(3):718-721
|
[27] |
Rival DE, Kriegseis J, Schaub P. et al. Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Experiments in Fluids, 2014,55(1):1660
|
[28] |
Ol MV, Gharib M. Leading-edge vortex structure of nonslender delta wings at low Reynolds number. AIAA Journal, 2003,41(1):16-26
|
[29] |
Zhang Q, Ye ZY. Novel method based on inflatable bump for vertical tail buffeting suppression. Journal of Aircraft, 2015,52(1):367-371
|
[30] |
张庆, 叶正寅. 排式双翼布局低雷诺数气动特性计算研究. 工程力学, 2019,36(10):244-256(Zhang Qing, Ye Zhengyin. Computational investigations for aerodynamic characteristic analysis of low Reynolds number doubly-tandem wing configurations. Engineering Mechanics. 2019,36(10):244-256 (in Chinese))
|
[31] |
张庆, 叶正寅. 基于气动导数的类X-37B飞行器纵向稳定性分析. 北京航空航天大学学报, 2020,46(1):77-85(Zhang Qing, Ye Zhengyin. Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives. Journal of Beijing University of Aeronautics and Astronautics. 2020,46(1):77-85 (in Chinese))
|
[32] |
张庆, 董彦非, 李恒 等. 展向自适应机翼总体气动特性分析. 西安交通大学学报, 2020,54(10):174-154(Zhang Qing, Dong Yanfei, Li Heng, et al. Computational investigation of overall aerodynamic characteristics for spanwise adaptive wing. Journal of Xi'an Jiaotong University, 2020,54(10):174-184 (in Chinese))
|
[33] |
Zhang J, Lu XY. Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight. Physical Review E, 2009,80(1):017302
|
[34] |
Muijres FT, Johansson LC, Barfield R. et al. Leading-edge vortex improves lift in slow-flying bats. Science, 2008,319(5867):1250-1253
|
[35] |
Wang JK, Sun M. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Journal of Experimental Biology, 2005,208(19):3785-3804
|
[36] |
刘惠祥, 何国毅, 王琦. 蜻蜓滑翔时柔性褶皱前翅气动特性分析. 力学学报, 2019,51(1):94-102(Liu Huixiang, He Guoyi, Wang Qi. Numerical study on the aerodynamic performance of the flexible and corrugated forewing of dragonfly in gliding flight. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(1):94-102 (in Chinese))
|
[37] |
Ellington CP, Van Den Berg C, Willmott AP, et al. Leading-edge vortices in insect flight. Nature, 1996,384(6610):626-630
|
[38] |
阎超, 李亭鹤, 黄贤禄. 三角翼上分离及涡流的数值模拟. 力学进展, 2001,31(2):227-244(Yan Chao, Li Tinghe, Huang Xianlu. Numerical simulation of separation and vortical flows on delta wings. Advances in Mechanics. 2001,31(2):227-244 (in Chinese))
|
[39] |
全景阁, 叶正寅, 张伟伟. 削尖三角翼涡破裂前后的气动弹性特性对比研究. 航空学报, 2011,32(3):379-389(Quan Jingge, Ye Zhengyin, Zhang Weiwei. Comparative study on aeroelastic characteristics of a cropped delta wing before and after vortex breakdown. Acta Aeronautica et Astronautica Sinica. 2011,32(3):379-389 (in Chinese))
|
[40] |
王刚, 叶正寅. 运用非定常 DES 方法数值模拟三角翼大迎角流动. 西北工业大学学报, 2008,26(4):413-418(Wang Gang, Ye Zhengyin. Study of the unsteady flow around a delta wing at high incidence using detached eddy simulation. Journal of Northwestern Polytechnical University. 2008,26(4):413-418 (in Chinese))
|