EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱非线性动力学方程的 Noether 准对称性与近似 Noether 守恒量

张毅

张毅. 弱非线性动力学方程的 Noether 准对称性与近似 Noether 守恒量[J]. 力学学报, 2020, 52(6): 1765-1773. doi: 10.6052/0459-1879-20-242
引用本文: 张毅. 弱非线性动力学方程的 Noether 准对称性与近似 Noether 守恒量[J]. 力学学报, 2020, 52(6): 1765-1773. doi: 10.6052/0459-1879-20-242
Zhang Yi. NOETHER QUASI-SYMMETRY AND APPROXIMATE NOETHER CONSERVATION LAWS FOR WEAKLY NONLINEAR DYNAMICAL EQUATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1765-1773. doi: 10.6052/0459-1879-20-242
Citation: Zhang Yi. NOETHER QUASI-SYMMETRY AND APPROXIMATE NOETHER CONSERVATION LAWS FOR WEAKLY NONLINEAR DYNAMICAL EQUATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1765-1773. doi: 10.6052/0459-1879-20-242

弱非线性动力学方程的 Noether 准对称性与近似 Noether 守恒量

doi: 10.6052/0459-1879-20-242
基金项目: 1) 国家自然科学基金(11972241);国家自然科学基金(11572212);江苏省自然科学基金(BK20191454)
详细信息
    作者简介:

    2) 张毅, 教授, 主要研究方向: 分析力学. E-mail: zhy@mail.usts.edu.cn

    通讯作者:

    张毅

  • 中图分类号: O316

NOETHER QUASI-SYMMETRY AND APPROXIMATE NOETHER CONSERVATION LAWS FOR WEAKLY NONLINEAR DYNAMICAL EQUATIONS

  • 摘要: 自然界和工程技术领域存在大量的非线性问题,它们通常需要用非线性微分方程来描述. 守恒量在微分方程的求解、约化和定性分析方面发挥重要作用. 因此,研究非线性动力学方程的近似守恒量具有重要意义. 文章利用 Noether 对称性方法研究弱非线性动力学方程的近似守恒量. 首先,将弱非线性动力学方程化为一般完整系统的 Lagrange 方程,在 Lagrange 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 其次,将弱非线性动力学方程化为相空间中一般完整系统的 Hamilton 方程,在 Hamilton 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 再次,将弱非线性动力学方程化为广义 Birkhoff 方程,在 Birkhoff 框架下建立 Noether 准对称性的定义和广义 Noether 等式,给出近似 Noether 守恒量. 最后,以著名的 van der Pol 方程,Duffing 方程以及弱非线性耦合振子为例,分析三个不同框架下弱非线性系统的 Noether 准对称性与近似 Noether 守恒量的计算. 结果表明:同一弱非线性动力学方程可以化为不同的一般完整系统或不同的广义 Birkhoff 系统;Hamilton 框架下的结果是 Birkhoff 框架的特例,而 Lagrange 框架下的结果与 Hamilton 框架的等价. 利用 Noether 对称性方法寻找弱非线性动力学方程的近似守恒量不仅方便有效,而且具有较大的灵活性.

     

  • [1] Ibragimov NH. A Practical Course in Differential Equations and Mathematical Modelling. Beijing: Higher Education Press, 2009
    [2] Marsden JE, Ratiu TS. Introduction to Mechanics and Symmetry. 2$^{nd}$ Edition. New York: Springer-Verlag, 1999
    [3] 梅凤翔, 吴惠彬, 李彦敏 等. Birkhoff 力学的研究进展. 力学学报, 2016,48(2):263-268
    [3] ( Mei Fengxiang, Wu Huibin, Li Yanmin, et al. Advances in research on Birkhoffian mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(2):263-268 (in Chinese))
    [4] Olver PJ. Applications of Lie Groups to Differential Equations. New York: Springer-Verlag, 1986
    [5] Mei FX. Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mechanica, 2000,141(3-4):135-148
    [6] Luo SK, Li ZJ, Peng W, et al. A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mechanica, 2013,224(1):71-84
    [7] Zhai XH, Zhang Y. Lie symmetry analysis on time scales and its application on mechanical systems. Journal of Vibration and Control, 2019,25(3):581-592
    [8] Noether AE. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu G?ttingen. Mathematisch-Physikalische Klasse 1918,KI:235-257
    [9] 梅凤翔. 李群和李代数对约束力学系统的应用. 北京: 科学出版社, 1999
    [9] ( Mei Fengxiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Beijing: Science Press, 1999 (in Chinese))
    [10] 梅凤翔. 关于Noether定理——分析力学札记之三十. 力学与实践, 2020,42(1):66-74
    [10] ( Mei Fengxiang. On the Noether's theorem. Mechanics in Engineering, 2020,42(1):66-74 (in Chinese))
    [11] 张毅. Caputo 导数下分数阶 Birkhoff 系统的准对称性与分数阶 Noether 定理. 力学学报, 2017,49(3):693-702
    [11] ( Zhang Yi. Quasi-symmetry and Noether's theorem for fractional Birkhoffian systems in terms of Caputo derivatives. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):693-702 (in Chinese))
    [12] 张毅. 相空间中非保守系统的 Herglotz 广义变分原理及其 Noether 定理. 力学学报, 2016,48(6):1382-1389
    [12] ( Zhang Yi. Generalized variational principle of Herglotz type for nonconservative system in phase space and Noether's theorem. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(6):1382-1389 (in Chinese))
    [13] Song CJ, Zhang Y. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fractional Calculus & Applied Analysis, 2018,21(2):509-526
    [14] 梅凤翔. 约束力学系统的对称性与守恒量. 北京: 北京理工大学出版社, 2004
    [14] ( Mei Fengxiang. Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing: Institute of Technology Press, 2004 (in Chinese))
    [15] Zhai XH, Zhang Y. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Physica Polonica A, 2019,136(3):439-443
    [16] Luo SK, Yang MJ, Zhang XT, et al. Basic theory of fractional Mei symmetrical perturbation and its application. Acta Mechanica, 2018,229(4):1833-1848
    [17] Zhai XH, Zhang Y. Mei symmetry and new conserved quantities of time-scale Birkhoff's equations. Complexity, 2020,2020:1691760
    [18] Bluman GW, Anco SC. Symmetry and Integration Methods for Differential Equations. New York: Springer-Verlag, 2002
    [19] Cai PP, Fu JL, Guo YX. Lie symmetries and conserved quantities of the constraint mechanical systems on time scales. Reports on Mathematical Physics, 2017,79(3):279-296
    [20] Jiang WA, Xia LL. Symmetry and conserved quantities for non-material volumes. Acta Mechanica, 2018,229(4):1773-1781
    [21] Zhang Y, Zhai XH. Perturbation to Lie symmetry and adiabatic invariants for Birkhoffian systems on time scales. Communication in Nonlinear Science and Numerical Simulation, 2019,75:251-261
    [22] Hu WP, Wang Z, Zhao YP, et al. Symmetry breaking of infinite-dimensional dynamic system. Applied Mathematics Letters, 2020,103:106207
    [23] Govinder KS, Heil TG, Uzer T. Approximate Noether symmetries. Physics Letters A, 1998,240(3):127-131
    [24] Denman HH. Approximate invariants and Lagrangians for autonomous, weakly non-linear systems. International Journal of Non-Linear Mechanics, 1994,29(3):409-419
    [25] Johnpillai AG, Kara AH, Mahomed FM. Approximate Noether-type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter. Journal of Computational and Applied Mathematics, 2009,223:508-518
    [26] Naeem I, Mahomed FM. Approximate partial Noether operators and first integrals for coupled nonlinear oscillators. Nonlinear Dynamics, 2009,57:303-311
    [27] 楼智美, 梅凤翔, 陈子栋. 弱非线性耦合二维各向异性谐振子的一阶近似 Lie 对称性与近似守恒量. 物理学报, 2012,61(11):110204
    [27] ( Lou Zhimei, Mei Fengxiang, Chen Zidong. The first-order approximate Lie symmetries and approximate conserved quantities of the weak nonlinear coupled two-dimensional anisotropic harmonic oscillator. Acta Physica Sinica, 2012,61(11):110204 (in Chinese))
    [28] 楼智美, 王元斌, 谢志堃. 典型微扰力学系统的近似 Lie 对称性、近似 Noether 对称性和近似 Mei 对称性. 北京大学学报 (自然科学版), 2016,52(4):681-686
    [28] ( Lou Zhimei, Wang Yuanbin, Xie Zhikun. Approximate Lie symmetries, approximate Noether symmetries and approximate Mei symmetries of typical perturbed mechanical system. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(4):681-686 (in Chinese))
    [29] Naz R, Naeem I. Generalization of approximate partial Noether approach in phase space. Nonlinear Dynamics, 2017,88:735-748
    [30] Naz R, Naeem I. The approximate Noether symmetries and approximate first integrals for the approximate Hamiltonian systems. Nonlinear Dynamics, 2019,96:2225-2239
    [31] Jiang WA, Xia LL. Approximate Birkhoffian formulations for nonconservative systems. Reports on Mathematical Physics, 2018,81(2):137-145
    [32] Nayfeh AH. Perturbation Methods. Hoboken, NJ: Wiley, 1973
    [33] Kovacic I. Conservation laws of two coupled non-linear oscillators. International Journal of Non-Linear Mechanics, 2006,41(5):751-760
  • 加载中
计量
  • 文章访问数:  773
  • HTML全文浏览量:  97
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回