[1] |
黄蕙, 马舒文, 王定略. 涵洞式直立堤透浪特性研究. 水运工程, 2013,12:25-29(Huang Hui, Ma Shuwen, Wang Dinglue. Wave transmission coefficients of vertical breakwater with culverts. Port & Waterway Engineering. 2013,12:25-29 (in Chinese))
|
[2] |
吕超凡, 赵西增. 涵洞式直立堤的消波性能研究//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议, 2019: 1323-1328(Lü Chaofan, Liu Chong, Zhao Xizeng. Wave dissipation property of the culvert type vertical breakwater//Proceedings of the 30th National Conference on Hydrodynamics & 15th National Congress on Hydrodynamics, 2019: 1323-1328 (in Chinese))
|
[3] |
殷铭简, 赵西增. 涵洞式直立堤涵管内振荡流特性研究//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议, 2019: 1044-1049(Yin Mingjian, Zhao Xizeng. Study on the characteristics of oscillating flow in the culvert pipe on a vertical breakwater//Proceedings of the 30th National Conference on Hydrodynamics & 15th National Congress on Hydrodynamics, 2019: 1044-1049 (in Chinese))
|
[4] |
邓斌, 王孟飞, 黄宗伟 等. 波浪作用下直立结构物附近强湍动掺气流体运动的数值模拟. 力学学报, 2020,52(2):408-419(Deng Bin, Wang Mengfei, Huang Zongwei, et al. Numerical simulation of the hydrodynamic characteristics of violent aerated flows near vertical structure under wave action. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(2):408-419 (in Chinese))
|
[5] |
王国盛, 拾兵, 何昆 等. 基于GA-BP神经网络的孤立波爬高预测. 中国海洋大学学报(自然科学版), 2018,48(S2):168-173(Wang Guosheng, Shi Bing, He Kun, et al. Prediction of solitary wave run-up based on GA-BP neural network. Periodical of Ocean University of China. 2018,48(S2):168-173 (in Chinese))
|
[6] |
霍政界. 基于人工神经网络的波浪发电系统输出功率预测. 电子测试, 2014(8):107-109(Huo Zhengjie. Output power prediction of the wave power system based on artificial neural network. Electronic Test, 2014(8):107-109 (in Chinese))
|
[7] |
金权. 基于机器学习算法对海浪波高的预测及优化研究. [博士论文]. 青岛: 自然资源部第一海洋研究所, 2019(Jin Quan. Prediction and optimization of wave height based on machine learning algorithm. [PhD Thesis]. Qingdao: The First Institute of Oceanography, MNR, 2019 (in Chinese))
|
[8] |
李博, 李骏旻, 李毅能 等. 人工神经网络在岛屿近岸海浪模拟中的应用. 厦门大学学报(自然科学版), 2020,59(3):420-427(Li Bo, Li Junmin, Li Yineng, et al. Application of artificial neural network to numerical wave simulation in the coastal region of island. Journal of Xiamen University (Natural Science), 2020,59(3):420-427 (in Chinese))
|
[9] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017,6:1229-1251(Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network. Chinese Journal of Computers. 2017,6:1229-1251 (in Chinese))
|
[10] |
Zhang Y, Sung W, Mavris D. Application of convolutional neural network to predict airfoil lift coefficient//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, 1903-1912
|
[11] |
Guo X, Li W, Iorio F. Convolutional neural networks for steady flow approximation//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2016, 481-490
|
[12] |
Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012,25(2):1-9
|
[13] |
Yu D, Wang H, Chen P. Mixed pooling for convolutional neural networks//Proceedings of the Rough Sets and Knowledge Technology (RSKT), 2014, 364-375
|
[14] |
Hinton GE, Srivastava N, Krizhevsky A. et al. Improving neural networks by preventing co-adaptation of feature detectors. Computer Science, 2012,3(4):212-223
|
[15] |
Hinton GE, Srivastava N, Krizhevsky A. et al. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014,15(1):1929-1958
|
[16] |
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back propagating errors. Nature, 1986,323(6088):533-536
|
[17] |
Trischler A, Wang T, Yuan X, et al. Newsqa: a machine comprehension dataset//Proceedings of the 2nd Workshop on Representation Learning for NLP, 2017
|
[18] |
Ganin Y, Ustinova E, Ajakan H. et al. Domain-adversarial training of neural networks. Journal of Machine Learning Research, 2017,17(1):2096-2030
|
[19] |
王坤峰, 苟超, 段艳杰 等. 生成式对抗网络GAN的研究进展与展望. 自动化学报, 2017,43(3):321-332(Wang Kunfeng, Gou Chao, Duan Yanjie, et al. Generative adversarial networks: The state of the art and beyond. Acta Automatica Sinica. 2017,43(3):321-332 (in Chinese))
|
[20] |
Schirrmeister RT, Gemein L, Eggensperger K. et al. Deep learning with convolutional neural networks for decoding and visualization of EEG pathology. Human Brain Mapping, 2017,38(11):5391-5420
|
[21] |
Rozantsev A, Salzmann M, Fua P. Beyond sharing weights for deep domain adaptation//IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016: 1-1
|
[22] |
Kingma D, Ba J. Adam: a method for stochastic optimization//International Conference on Learning Representations (ICLR), 2014, 1-15
|
[23] |
Fu Y, Zhao X, Cao F. et al. Numerical simulation of viscous flow past an oscillating square cylinder using a cip-based model. Journal of Hydrodynamics, 2017,29:96-108
|
[24] |
Zhao X, Cheng D, Zhang D. et al. Numerical study of low-reynolds-number flow past two tandem square cylinders with varying incident angles of the downstream one using a CIP-based model. Ocean Engineering, 2016,121:414-421
|
[25] |
Zheng K, Zhao X, Yang Z. et al. Numerical simulation of water entry of a wedge using a modified ghost-cell immersed boundary method. Journal of Marine Science and Technology, 2019,2:108-116
|
[26] |
Zheng K, Zhao X. Numerical simulation of water exit and entry using a modified ghost cell immersed boundary method. Journal of Marine Science and Technology. 2020,3:1107-1113
|
[27] |
Zhao X, Gao Y, Cao F. et al. Numerical modeling of wave interactions with coastal structures by a constrained interpolation profile/immersed boundary method. International Journal for Numerical Methods in Fluids. 2016,81(5):265-283
|
[28] |
Zhao X, Cheng D, Zhang Y. et al. Experimental and numerical study on the hydrodynamic characteristics of solitary waves passing over a submerged breakwater. China Ocean Engineering, 2019,33:253-267
|
[29] |
聂隆锋, 赵西增, 张志杭 等. 基于VPM-THINC/QQ模型的波浪高保真模拟. 力学学报, 2019,51(4):1043-1053(Nie Longfeng, Zhao Xizeng, Zhang Zhihang, et al. High-fidelity simulation of wave propagation based on VPM-THINC/QQ model. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(4):1043-1053 (in Chinese))
|
[30] |
岳杰顺, 权晓波, 叶舒然 等. 水下发射水动力的多尺度预测网络研究. 力学学报, 2020,12(4):1-11(Yue Jieshun, Quan Xiaobo, Ye Shuran, et al. A multi-scale network for the prediction of hydrodynamics in underwater. Chinese Journal of Theoretical and Applied Mechanics. 2020,12(4):1-11 (in Chinese))
|