EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长编组高速列车的列车风动模型实验研究

郭易 郭迪龙 杨国伟 刘雯

郭易, 郭迪龙, 杨国伟, 刘雯. 长编组高速列车的列车风动模型实验研究[J]. 力学学报, 2021, 53(1): 105-114. doi: 10.6052/0459-1879-20-226
引用本文: 郭易, 郭迪龙, 杨国伟, 刘雯. 长编组高速列车的列车风动模型实验研究[J]. 力学学报, 2021, 53(1): 105-114. doi: 10.6052/0459-1879-20-226
Guo Yi, Guo Dilong, Yang Guowei, Liu Wen. MOVING MODEL ANALYSIS OF THE SLIPSTREAM OF A LONG GROUPING HIGH-SPEED TRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 105-114. doi: 10.6052/0459-1879-20-226
Citation: Guo Yi, Guo Dilong, Yang Guowei, Liu Wen. MOVING MODEL ANALYSIS OF THE SLIPSTREAM OF A LONG GROUPING HIGH-SPEED TRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 105-114. doi: 10.6052/0459-1879-20-226

长编组高速列车的列车风动模型实验研究

doi: 10.6052/0459-1879-20-226
基金项目: 1) 中科院先导专项资助项目(XDB22020100)
详细信息
    作者简介:

    2) 郭迪龙, 正高级工程师, 主要研究方向: 高速列车空气动力学. E-mail: jack9517@126.com

    通讯作者:

    郭迪龙

  • 中图分类号: U266

MOVING MODEL ANALYSIS OF THE SLIPSTREAM OF A LONG GROUPING HIGH-SPEED TRAIN

  • 摘要: 列车风是高速列车运行时诱导产生的气流流动, 是列车空气动力学重要的研究内容和保证列车运行安全的重要方面. 本文利用缩尺比例为1\bh8的八编组高速列车模型进行了列车风的动模型实验,测试了明线运行状态下列车周围的流动参数,突破了短编组列车风动模型测试所带来的局限性.列车风系综平均曲线和标准差曲线说明: 列车头部会引起稳定的列车风,在车身和车尾处的列车风具有非常明显的非定常特征.列车风所反映的车身周围的气流扰动在第二节车厢开始显现, 列车风速振荡上升,在第七节车厢达到局部最大值.转向架舱和车厢间风挡间隙的气流干扰并没有在列车风曲线上表现出来.利用本征正交分解法分析列车风尾迹区的实验结果,发现列车风的扰动能量集中于近尾迹区, 次之是车身发展区.以各次实验结果中列车风的峰值位置距离车尾远近为条件,对列车风实验结果进行条件平均分析,表明列车尾涡生成时与列车风探针间的相对位置关系会影响列车风尾迹区的峰值形态.

     

  • [1] Bell JR, Burton D, Thompson MC , et al. Moving model analysis of the slipstream and wake of a high-speed train. Journal of Wind Engineering And Industrial Aerodynamics, 2015,136:127-137
    [2] Baker CJ, Quinn A, Sima M , et al. Full-scale measurement and analysis of train slipstreams and wakes. Part 2: Gust analysis. Journal of Rail & Rapid Transit, 2013,228(5):468-480
    [3] 李人宪, 赵晶, 张曙  等. 高速列车风对附近人体的气动作用影响. 中国铁道科学, 2007(05):98-104.

    (Li Renxian, Zhao Jing, Zhang Shu , et al. Influence of the aerodynamic force to human body near high-speed trains. China Railway Science, 2013,228(5):468-480 (in Chinese))
    [4] 徐鹤寿, 何德昭, 王厚雄 . 准高速列车侧向人员安全距离的研究. 中国铁道科学, 1996(1):21-31.

    (Xu Heshou, He Dezhao, Wang Houxiong . A study on the safe clearance for persons from running quansi-high-speed train. China Railway Science, 1996(1):21-31 (in Chinese))
    [5] Pope CW . Effective management of risk from slipstream effects at trackside and platforms//Rail Safety and Standards Board-T425 Report, 2007
    [6] ERA. EU technical specification for interoperability relating to the 'Rolling Stock' sub-system of the Trans-European High-Speed Rail System (HS RST TSI). 2008
    [7] Standard CE . Railway applications - aerodynamics - Part 4: Requirements and test procedures for aerodynamics on open track. CEN EN14067-4. 2009
    [8] Baker C . The flow around high-speed trains. Journal of Wind Engineering & Industrial Aerodynamics, 2010,98(6):277-298
    [9] Flynn D, Hemida H, Baker C . On the effect of crosswinds on the slipstream of a freight train and associated effects. Journal of Wind Engineering and Industrial Aerodynamics, 2016,156:14-28
    [10] Baker CJ, Dalley SJ, Johnson T , et al. The slipstream and wake of a high-speed train. Journal of Rail & Rapid Transit, 2001,215(2):83-99
    [11] Baker C, Sterling M, FiguralHardy  G, et al. The effect of train slipstreams on passengers and trackside workers//World Congress on Railway Research, 2006
    [12] Rocchi D, Tomasini G, Schito P , et al. Wind effects induced by high speed train pass-by in open air. Journal of Wind Engineering & Industrial Aerodynamics, 2018,173:279-288
    [13] Bell JR, Burton D, Thompson MC . The boundary-layer characteristics and unsteady flow topology of full-scale operational inter-modal freight trains. Journal of Wind Engineering and Industrial Aerodynamics, 2020,201:104164
    [14] Bell JR, Burton D, Thompson M , et al. Wind tunnel analysis of the slipstream and wake of a high-speed train. Journal of Wind Engineering And Industrial Aerodynamics, 2014,134:122-138
    [15] 韩运动, 陈大伟, 刘韶庆  等. 不同风速风向条件下的列车风特性. 中国铁道科学, 2018,39(6):104-111.

    (Han Yundong, Chen Dawei, Liu Shaoqing , et al. Characteristics of train induced wind under different wind speeds and directions. China Railway Science, 2018,39(6):104-111 (in Chinese))
    [16] 姚拴宝, 郭迪龙, 杨国伟 . 基于径向基函数网格变形的高速列车头型优化. 力学学报, 2013,45(6):982-986.

    (Yao Shuanbao, Guo Didong, Yang Guowei . Aerodynamic optimization of high speed train based on RBF mesh deformation. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(6):982-986 (in Chinese))
    [17] 安翼, 莫晃锐, 刘青泉 . 高速列车头型长细比对气动噪声的影响. 力学学报, 2017,49(5):985-996.

    (An Yi, Mo Huangrui, Liu Qingquan . Study on the influence of the nose slenderness ratio of high-speed train on the aerodynamic noise. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):985-996 (in Chinese))
    [18] Morel T . Effect of base slant on flow in the near wake of an axisymmetric cylinder. Aeronautical Quarterly, 2016,31(2):132-147
    [19] Muld TW, Efraimsson G, Dan SH . Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition. Computers & Fluids, 2012,57(4):87-97
    [20] Weise M, Schober M, Orellano A . Slipstream velocities induced by trains//Proceedings of the WSEAS International Conference on Fluid Mechanics and Aerodynamics,  Elounda, Greece, 2006
    [21] Hemida H, Baker C, Gao G . The calculation of train slipstreams using large-eddy simulation. Journal of Rail & Rapid Transit, 2014,228(1):25-36
    [22] 潘永琛, 姚建伟, 李昌烽 . 高速列车近尾流区湍流涡旋的数值计算及动力学讨论. 力学季刊, 2017,38(2):351-358.

    (Pan Yongchen, Yao Jianwei, Li Changfeng . Numerical simulation and dynamics discussion of turbulent eddies in the near wake of a high speed train. Chinese Quarterly of Mechanics, 2017,38(2):351-358 (in Chinese))
    [23] 潘永琛, 姚建伟, 梁策  等. 高速列车近尾流区涡旋结构的湍流特性分析. 中国铁道科学, 2017,38(2):83-88.

    (Pan Yongchen, Yao Jianwei, Liang Ce , et al. Analysis on turbulence characteristics of vortex structure in near wake of high speed train. China Railway Science, 2017,38(2):83-88 (in Chinese))
    [24] Huang S, Hemida H, Yang M . Numerical calculation of the slipstream generated by a CRH2 high-speed train. Journal of Rail & Rapid Transit, 2016,230(1):103-116
    [25] Heine D, Lauenroth G, Haff J , et al. High-speed particle image velocimetry on a moving train model: Experimental study of the flow around an ICE3-model in the tunnel-simulation facility g$ddot{o}$ttingen//2nd International Symposium Rail-Aerodynamics 2013 Aerodynamics of Trains and Infrastructure. DLR, 2013
    [26] Bell JR, Burton D, Thompson MC , et al. Dynamics of trailing vortices in the wake of a generic high-speed train. Journal of Fluids & Structures, 2016,65:238-256
    [27] Bell JR, Burton D, Thompson MC , et al. A wind-tunnel methodology for assessing the slipstream of high-speed trains. Journal of Wind Engineering & Industrial Aerodynamics, 2017,166:1-19
    [28] Willemsen E . High Reynolds number wind tunnel experiments on trains. Journal of Wind Engineering & Industrial Aerodynamics, 1997, s69-71(97):437-447
    [29] Baker CJ, Quinn A, Sima M , et al. Full-scale measurement and analysis of train slipstreams and wakes. Part 1: Ensemble averages. Journal of Rail & Rapid Transit, 2014,228(5):451-467
    [30] Perrin R, Braza M, Cid E , et al. Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Experiments in Fluids, 2007,43(2-3):341-355
    [31] Graftieaux L, Michard M, Grosjean N. Combining PIV , POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Measurement Science & Technology, 2001,12(9):1422-1429
    [32] Muld T, Efraimsson G, Henningson D . Mode decomposition and slipstream velocities in the wakes of two high-speed trains. International Journal of Railway Technology, 2013,2(1):1-38
    [33] 潘丁浩, 吴亚东 . 使用POD与DMD分析非定常流动数值模拟结果//2015年中国工程热物理学会流体机械学术年会, 2015.

    (Pan Dinghao, Wu Yadong . The numerical simulation results of unsteady flow are analyzed with POD and DMD//The 2015 Annual Conference of Fluid Machinery, the Engineering Thermophysics Society, 2015 (in Chinese))
    [34] Liu W, Guo DL, Zhang ZJ , et al. Effects of bogies on the wake flow of a high-speed train. Applied Sciences-Basel, 2019, 9(4): AR759
    [35] Schulte-Werning B, Heine C, Matschke G . Slipstream development and wake flow characteristics of modern high-speed trains. Ztschrift Angewandte Mathematik Und Mechanik, 2001,81:S789-S790
    [36] Yao SB, Sun ZX, Guo DL , et al. Numerical study on wake characteristics of high-speed trains. Acta Mechanica Sinica, 2013,29(6):811-822
    [37] Schulte-Werning B, Heine C, Matschke G . Unsteady wake flow characteristics of high-speed trains. PAMM, 2003,2(1):332-333
    [38] 潘永琛, 姚建伟, 刘涛  等. 基于涡旋识别方法的高速列车尾涡结构的讨论. 力学学报, 2018,50(3):667-676.

    (Pan Yongchen, Yao Jianwei, Liu Tao , et al. Discussion on the wake vortex structure of a high-speed trainby vortex identification methods. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):667-676 (in Chinese))
  • 加载中
计量
  • 文章访问数:  395
  • HTML全文浏览量:  39
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-29

目录

    /

    返回文章
    返回