RESEARCH, DEVELOPMENT AND PROSPECT OF CHINA HIGH-SPEED TRAIN
-
摘要: 十几年来, 以高速列车为代表的高速铁路装备在长期技术积累和自主研发的基础上,经过引进消化吸收再创新、自主提升创新、全面创新和持续创新,成功研制了多代先进的高速列车产品. 通过不断的技术创新,突破了高速列车系列关键技术, 形成了自主研发能力,不断提升高速列车的安全性、可靠性、经济性、环保性及智能化.我国高速列车的运行速度、综合舒适度、安全性、可靠性、节能环保等各项综合性能指标优良,部分指标达到国际领先水平.论文系统回顾了我国和谐号动车组、复兴号动车组、城际动车组、前沿动车组产品的发展成就及主要技术突破,分析了高速列车研发过程中面临的复杂环境适应性、大系统复杂耦合作用、安全可靠设计、智能化应用等关键技术挑战,系统概述了高速列车故障预测与健康管理技术、车体轻量化技术、被动安全防护技术、碳纤维复合材料应用、气动外形设计技术、高速转向架技术、噪声控制技术、牵引制动技术等关键技术的研究进展及主要技术突破, 并展望了高速列车动力学技术、结构安全技术、被动安全防护技术、流固耦合技术、牵引制动技术、智能控制安全技术、故障预测与健康管理技术、综合节能技术等关键技术的未来发展方向.Abstract: For more than ten years, based on the long-term technology accumulation and independent research and development of the high-speed railway equipment represented by the high-speed train, multiple generations of the advanced high-speed train products had been successfully developed through the technology introduction, digestion and innovation, independent promotion and innovation, comprehensive innovation and continuous innovation. Through the continuous technological innovation, important technology breakthroughs had been made in the series key technologies of the high-speed train, and the independent research and development capabilities had been formed, which continuously improve the safety, reliability, economy, environmental protection and intelligence of the high-speed train. China high-speed trains have excellent comprehensive performance indicators, such as the operating speed, comprehensive comfort, safety, reliability, energy conservation, environmental protection, etc. Some performance indicators have reached the international advanced level. In the present paper, the development achievements and major technology breakthroughs of China high-speed trains, including Hexie EMU, Fuxing EMU, intercity EMU and advanced EMU products, were firstly systematically reviewed. Then the key technology challenges that faced during the research and development of the high-speed train were analyzed, including the complex environment adaptability, complex coupled effect of the large system, safe and reliable design, intelligent application, etc. The research progresses and major technology breakthroughs of the key technologies of the high-speed train, such as the prognostic and health management (PHM) technology, lightweight vehicle body technology, passive safety protection technology, carbon fibre reinforced plastics (CFRP) applications, aerodynamic shape design technology, high-speed bogie technology, noise control technology, traction and brake technology, etc. were systematically outlined. Finally, the future developments of the key technologies of the high-speed train, such as the dynamic technology, structural safety technology, passive safety protection technology, fluid-structure coupled technology, traction and brake technology, intelligent control safety technology, prognostic and health management technology, comprehensive energy saving technology, etc. were further prospected.
-
Keywords:
- high-speed train /
- intelligent /
- lightweight /
- passive safety /
- aerodynamic design /
- noise control
-
-
[1] 杨国伟, 魏宇杰, 赵桂林 等. 高速列车关键力学问题研究. 力学进展, 2015,45:201507 (Yang Guowei, Wei Yujie, Zhao Guilin, et al. Current research process in the mechanics of high-speed rails. Advances in Mechanics, 2015,45:201507 (in Chinese))
[2] 梁建英, 丁叁叁, 田爱琴 等. 新一代高速动车组车体设计创新技术. 中国工程科学,2015,17(4):63-68 ( Liang Jianying, Ding Sansan, Tian Aiqin, et al. Innovative design technology for the new generation of high-speed EMU. Strategic Study of CAE, 2015,17(4):63-68 (in Chinese))
[3] Qi YH, Zhou L . The fuxing: The China standard EMU. Engineering, 2020,6:227-233 [4] 丁叁叁, 张忠敏, 何丹炉 等. 城际动车组总体技术设计. 机车电传动, 2014(6):10-15 ( Ding Sansan, Zhang Zhongmin, He Danlu, et al. Overall technical design of intercity EMUs. Electric Drive for Locomotives, 2014(6):10-15 (in Chinese))
[5] 何丹炉, 梁君海, 丁叁叁 . CRH6F型城际动车组研制. 铁道车辆, 2014,52(12):14-17. (He Danlu, Liang Junhai, Ding Sansan . Development of CRH6F intercity multiple units. Rolling Stock, 2014,52(12):14-17 (in Chinese))
[6] 于梦阁, 张继业, 张卫华 . 随机风速下高速列车的运行安全可靠性. 力学学报, 2013,45(4):483-492. (Yu Mengge, Zhang Jiye, Zhang Weihua . Operational safety reliability of high-speed trains under stochastic winds. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(4):483-492 (in Chinese))
[7] 张卫华 . 高速列车耦合大系统动力学理论与实践. 北京: 科学出版社. (Zhang Weihua. Dynamics of Coupled Systems in High- speed Trains: Theory and Practice. Beijing: Science Press (in Chinese))
[8] 丁叁叁 . 高速列车本构安全保障技术 . 机车电传动, 2017( 6): 1-5, 16. (Ding Sansan. Constitutive safety support technology of high-speed train. Electric Drive for Locomotives, 2017(6):1-5, 16 (in Chinese))
[9] Gerdes M . Predictive health monitoring for aircraft system using decision trees. [PhD Thesis]. Sweden: Linking University, 2014 [10] Paula FL, Tiago MFC, Luis C . Towards the internet of smart trains: A review on industrial Iot-connected railways. Sensor, 2017,17(6):1457-1501 [11] 梁建英 . 高速列车智能诊断与故障预测技术研究. 北京交通大学学报, 2019,43(1):63-70. (Liang Jianying . Research on intelligent diagnosis and fault prediction technology for high-speed trains. Journal of Beijing Jiaotong University, 2019,43(1):63-70 (in Chinese))
[12] 梁建英, 刘韶庆, 范庆龙 等. 大数据在我国高速动车组运维中的应用. 控制与信息技术, 2019(1):7-11. (Liang Jianying, Liu Shaoqing, Fan Qinglong , et al. Application of big data technology in the operation and maintenance for high speed EMUs. Control and Information Technology, 2019(1):7-11 (in Chinese))
[13] 丁叁叁 . 高速动车组降阻与减重应用开发. 机车电传动, 2012(5):10-16. (Ding Sansan . Application development of high-speed EMUs resistance force reduction and weight lightening. Electric Drive for Locomotives, 2012(5):10-16 (in Chinese))
[14] 丁叁叁 . 高速列车车体设计关键技术研究. [博士论文]. 北京: 北京交通大学, 2016. (Ding Sansan . Study of the key technology of the high-speed train body. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2016 (in Chinese))
[15] 丁叁叁, 李强, 卢毓江 等. 防爬吸能装置的碰撞动力学性能. 西南交通大学学报, 2015,50(4):732-739. (Ding Sansan, Li Qiang, Lu Yujiang , et al. Dynamic performance of anti-climber device for trains in crash. Journal of Southwest Jiaotong University, 2015,50(4):732-739 (in Chinese))
[16] 丁叁叁, 田爱琴, 李睿 等. 高速列车串行铝蜂窝吸能结构的轴向冲击动力学响应. 中南大学学报(自然科学版), 2016,47(5):1782-1787. (Ding Sansan, Tian Aiqin, Li Rui , et al. Dynamic characteristics of serial honeycomb structure under high-speed impact. Journal of Central South University (Science and Technology), 2016,47(5):1782-1787 (in Chinese)
[17] 张志新, 田爱琴, 车全伟 等. 高速列车车体端部吸能结构研究. 机车电传动, 2013(1):43-47. (Zhang Zhixin, Tian Aiqin, Che Quanwei , et al. Research on energy-absorbing structures for two ends of high-speed train car body. Electric Drive for Locomotives, 2013(1):43-47 (in Chinese)
[18] Kim JS, Jong JC, Cho SH , et al. Fire resistance evaluation of a train carbody made of composite material by large scale tests. Composite Structures, 2008,83(3):295-303 [19] Kim JS, Lee SJ, Shin KB . Manufacturing and structural safety evaluation of a composite train carbody. Composite Structures, 2007,78(4):468-476 [20] Jang HJ, Shin KB, Han SH . A study on crashworhiness assessment and improvement of tilting train made of sandwich composites//Proceedings of World Academy of Science, Engineering and Technology. World Academy of Science, Engineering and Technology, 2012 [21] 丁叁叁, 田爱琴, 王建军 等. 高速动车组碳纤维复合材料应用研究. 电力机车与城轨车辆, 2015,38:1-6. (Ding Sansan, Tian Aiqin, Wang Jianjun , et al. Research on application of carbon fiber composite in high speed EMUs. Electric Locomotives & Mass Transit Vehicles, 2015,38:1-6 (in Chinese))
[22] 刘晓波, 杨颖 . 碳纤维增强复合材料在轨道车辆中的应用. 电力机车与城轨车辆, 2015,38(4):72-76. (Liu Xiaobo, Yang Ying . Application of carbon fiber-reinforced polymer in rail vehicle. Electric Locomotives & Mass Transit Vehicles, 2015,38(4):72-76 (in Chinese))
[23] 邬志华, 曾竟成, 刘钧 . 高速列车及其用复合材料的发展. 材料导报A, 2011,25(21):108-114. (Wu Zhihua, Zeng Jingcheng, Liu Jun . Development of high-speed train and its composites. Materials Reports A, 2011,25(21):108-114 (in Chinese))
[24] Yao SB, Guo DL, Sun ZX , et al. Optimization design for aerodynamic elements of high speed trains. Computers & Fluids, 2014,95:56-73 [25] Yu MG, Zhang JY, Zhang KY , et al. Study on the operational safety of high-speed trains exposed to stochastic winds. Acta Mechanica Sinica, 2014,30(3):351-360 [26] 姚拴宝, 郭迪龙, 杨国伟 . 基于径向基函数网格变形的高速列车头型优化. 力学学报, 2013,45(6):982-986. (Yao Shuanbao, Guo Dilong, Yang Guowei . Aerodynamic optimization of high-speed train based on RBF mesh deformation. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(6):982-986 (in Chinese))
[27] 潘永琛, 姚建伟, 刘涛 等. 基于涡旋识别方法的高速列车尾涡结构的讨论. 力学学报, 2018,50(3):667-676. (Pan Yongchen, Yao Jianwei, Liu Tao , et al. Discussion on the wake vortex structure of a high-speed train by vortex identification methods. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):667-676 (in Chinese))
[28] Ding SS, Li Q, Tian AQ , et al. Aerodynamic design on high-speed trains. Acta Mechanica Sinica, 2016,32(2):215-232 [29] 丁叁叁, 杜健, 刘加利 等. 城际动车组气动设计方法的研究. 机车电传动, 2015(1):4-9. (Ding Sansan, Du Jian, Liu Jiali , et al. Research of aerodynamic design method for the intercity EMUs. Electric Drive for Locomotives, 2015(1):4-9 (in Chinese))
[30] Yang GW, Guo DL, Yao SB , et al. Aerodynamic design for China new high-speed trains. Science China Technological Science, 2012,55(7):1923-1928 [31] Talotte C, Gautier PE, Thompson DJ , et al. Identification, modeling and reduction potential of railway noise sources: A critical survey. Journal of Sound and Vibration, 2003,267(2):447-468 [32] Talotte C . Aerodynamic noise: A critical survey. Journal of Sound and Vibration, 2000,231:549-562 [33] 刘加利 . 高速列车气动噪声特性分析与降噪研究. [博士论文]. 成都: 西南交通大学, 2013. (Liu Jiali . Study on characteristics analysis and control of aeroacoustics of high-speed trains. [PhD Thesis]. Chengdu: Southwest Jiaotong University, 2013 (in Chinese))
[34] 莫晃锐, 安翼, 刘青泉 . 高速列车车体长度对气动噪声影响的数值研究. 力学学报, 2019,51(5):1310-1320. (Mo Huangrui, An Yi, Liu Qingquan . Influence of the length of high-speed train on the far-field aeroacoustics characteristics. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1310-1320 (in Chinese))
[35] 安翼, 莫晃锐, 刘青泉 . 高速列车头型长细比对气动噪声的影响. 力学学报, 2017,49(5):985-996. (An Yi, Mo Huangrui, Liu Qingquan . Study on the influence of the nose slenderness ratio of high-speed train on the aerodynamic noise. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):985-996 (in Chinese))
[36] 孙振旭, 姚永芳, 杨焱 等. 国内高速列车气动噪声研究进展概述. 空气动力学学报, 2018,36(3):385-397. (Sun Zhenxu, Yao Yongfang, Yang Yan , et al. Overview of the research progress on aerodynamic noise of high-speed trains in China. Acta Aerodynamic Sinica, 2018,36(3):385-397 (in Chinese))
[37] 梁君海, 王冰松, 王东镇 等. 城际动车组噪声研究. 机车电传动, 2015, ( 1):10-14. (Liang Junhai, Wang Bingsong, Wang Dongzhen , et al. Noise research on intercity EMUs. Electric Drive for Locomotives, 2014, ( 6):10-15 (in Chinese))
-
期刊类型引用(67)
1. 刘浩楠,戴宇,肖望强. 动车组外车门粒子阻尼器减振隔声研究. 科学技术与工程. 2025(02): 788-794 . 百度学术
2. 邓自刚,胡啸,王潇飞,李宗澎,张卫华. 真空管道磁浮交通试验平台建设及管内气动特性研究进展. 机械工程学报. 2025(02): 181-197 . 百度学术
3. 王力,张锦华,闫春江. 湿热海洋环境下6005A铝合金车体的腐蚀行为研究. 材料保护. 2025(02): 108-116 . 百度学术
4. 吴生举,李奕萱,王先田. 泰国高速铁路运营机构设置方案研究. 综合运输. 2025(02): 202-208 . 百度学术
5. 汤晏宁,戴宇,肖望强,邵堃. 高铁地板型材粒子阻尼技术减振降噪设计. 噪声与振动控制. 2025(02): 145-150+242 . 百度学术
6. 杨蔡进. 连续运行车辆-轨道垂向耦合动力学的时变分析法. 力学学报. 2025(03): 740-754 . 本站查看
7. 卫梦杰,刘峰,邸娟,杨斯涵,马健斌,陈大伟. 高速列车通过最不利隧道气动阻力数值分析. 西安交通大学学报. 2024(01): 167-177 . 百度学术
8. 吴中臣,刘欣. 时速350 km复兴号动车组司机登乘门研究. 轨道交通材料. 2024(01): 22-26 . 百度学术
9. 李怡,廖思璐. 基于策略分析模型的高速列车急救系统设计. 设计. 2024(03): 130-134 . 百度学术
10. 毕振庆,曹先伟,赵金龙,罗猛. 一种城际动车组车内空气排风道及空调机组排水管布置方案. 铁道机车与动车. 2024(02): 23-25+62 . 百度学术
11. 汤晏宁,戴宇,肖望强,邵堃. 基于粒子阻尼的高铁内装木地板减振降噪设计. 机车电传动. 2024(01): 85-92 . 百度学术
12. 张宗发,肖新标,韩健,杨益. 400 km/h高速列车车下带格栅裙板区域气动噪声机理及影响因素分析. 实验流体力学. 2024(01): 79-90 . 百度学术
13. 马建勇,马术文,张海柱,黎荣,肖鹏. 高速列车转向架轻量化设计评估系统构建. 机械. 2024(03): 52-58+73 . 百度学术
14. 张金,刘宇轩,李建,阚前华. U75V钢轨钢耦合损伤循环塑性本构模型研究. 四川轻化工大学学报(自然科学版). 2024(02): 31-38 . 百度学术
15. 张海柱,黎荣,丁国富,马凯,邓海. 高速列车顶层设计指标分解研究现状与展望. 西南交通大学学报. 2024(02): 456-466 . 百度学术
16. 杨蕾,向泽锐,赵超,徐剑,高朋飞. 融合特征语义和模糊层次分析的空铁外观设计研究. 包装工程. 2024(10): 150-157+167 . 百度学术
17. 曲华,刘韶庆,夏树伟,张涛,宋坤林. 一种模拟铝合金与CFRTP界面反应过程的计算方法. 轨道交通材料. 2024(02): 1-5 . 百度学术
18. 郭砚昭,张乐乐,窦伟元. 耦合排障-吸能的高速列车排障器结构双尺度拓扑优化设计. 中南大学学报(自然科学版). 2024(05): 1966-1978 . 百度学术
19. 宋军浩,鲁海洋,陈大伟,刘加利. 高速动车组下沉式受电弓区域流场特性研究. 铁道车辆. 2024(03): 49-53 . 百度学术
20. 程凯,祁文哲. 横风环境下高速列车气动力模拟与分析. 机电工程技术. 2024(07): 201-204+216 . 百度学术
21. 曹洪勇,付彬,王旭,刘彬彬,Di Gialleonardo Egidio,Bruni Stefano. 高速动车组一系垂向半主动悬挂研究. 力学学报. 2024(08): 2423-2435 . 本站查看
22. 石姗姗,马嘉欣,陈秉智,汉红彪,王国鑫. Y型蜂窝等效模型及蜂窝夹芯结构车体的仿真分析. 铁道科学与工程学报. 2024(09): 3743-3754 . 百度学术
23. 曲华,刘韶庆,夏树伟,宋坤林,张涛. 温度对聚酰胺与金属铝晶面相互作用影响的计算分析. 当代化工研究. 2024(18): 1-4 . 百度学术
24. 吕梦熙,石明宽,朱忠奎. 基于机器学习的高铁齿轮箱智能运维应用现状与发展趋势. 农业装备与车辆工程. 2024(10): 124-128+140 . 百度学术
25. 钱堃,沈政华,谭璟,刘珂,段继英,杜习康,赵剑. 高速列车车内声品质评价综述. 交通运输工程学报. 2024(05): 154-172 . 百度学术
26. 朱龙龙,孙林峰,魏玲玲. 高速动车组平面布置及服务设施分析. 轨道交通装备与技术. 2024(06): 7-11+64 . 百度学术
27. 马丽英,李春超,张培胜. 地铁车辆转向架动应力测试与分析. 工程与试验. 2024(04): 22-24 . 百度学术
28. 曲华,刘韶庆,夏树伟,宋坤林,王姗姗. 聚酰胺分子与金属铝晶面键合的理论计算. 材料导报. 2024(S2): 684-690 . 百度学术
29. 任连伟,李梁,王自强,邹友峰,顿志林,王树仁. 采空区场地高速铁路路基动力加载系统研发与模型试验. 煤炭学报. 2024(12): 4752-4767 . 百度学术
30. 张波,高翔,黄金,陈波. 国外新型高速动车组技术现状与发展趋势. 中国铁路. 2023(01): 42-50 . 百度学术
31. 丁国富,何旭,张海柱,黎荣,王帅虎. 数字孪生在高速列车生命周期中的应用与挑战. 西南交通大学学报. 2023(01): 58-73 . 百度学术
32. 张海柱,黎荣,马凯,邓海,丁国富. 智能动车组环境交互设计模型研究. 中国铁路. 2023(01): 90-96+132 . 百度学术
33. 李泰国,张英志,张天策,陈小强. 基于改进YOLOv5s算法的列车驾驶员手势识别. 铁道学报. 2023(01): 75-83 . 百度学术
34. 丁叁叁,刘加利,陈大伟. 600 km/h高速磁浮交通系统气动设计. 实验流体力学. 2023(01): 1-8 . 百度学术
35. 李秋泽,单巍,张英春,杨广雪,梁树林. 中国高速动车组转向架技术发展及展望. 机车电传动. 2023(02): 14-35 . 百度学术
36. 丁杰,尹亮. 高速动车组牵引变流器的压力特性及温升计算. 电气工程学报. 2023(02): 287-294 . 百度学术
37. 张信广,李浩杰,刘振波,王添,刘昱. 面向轨道车辆的三维模型审查系统研究. 制造业自动化. 2023(07): 169-173+183 . 百度学术
38. 曾妮,李金龙,高晓蓉,张渝,罗林. 基于散乱点云的列车关键部件高效滤波平滑算法. 激光与光电子学进展. 2023(14): 112-119 . 百度学术
39. 王力霆,唐兆,黎荣,辜铮,胡玉炜,李岳洪,张继业. 云仿真驱动的列车动力学协同可视化分析. 中国机械工程. 2023(18): 2248-2256 . 百度学术
40. 肖望强,邵堃. 基于粒子阻尼的高速动车组侧墙蒙皮减振研究. 铁道科学与工程学报. 2023(09): 3251-3261 . 百度学术
41. 李付星. 面向可持续运行的高速列车设计方法. 机械设计与研究. 2023(05): 210-218+224 . 百度学术
42. 杨建业,张哲,董祺,白智文. 基于Bootstrap法的轨道车辆镁合金主S-N曲线研究. 铁道技术标准(中英文). 2023(09): 8-15+32 . 百度学术
43. 门永林,潘安霞. 重载列车车轮轮缘径向开裂原因分析. 轨道交通材料. 2023(05): 1-6 . 百度学术
44. 刘纯国,王廖子,姚作杨. 5083铝合金GTN损伤参数求解与成形极限预测. 中南大学学报(自然科学版). 2023(11): 4315-4325 . 百度学术
45. 陶桂东,张方涛. 雅万高铁高速动车组定制设计实践. 中国铁路. 2023(12): 98-105 . 百度学术
46. Chunfang Lu,Zunsong Ren,Chengxian Ma. Study on the technologies development trend of high speed EMUs. High-speed Railway. 2023(01): 1-5 . 必应学术
47. 李汛保,唐子谋,王松岩,华实,李科成. 高速磁浮列车悬浮电磁铁挠曲变形位移补偿技术. 电力机车与城轨车辆. 2022(01): 8-11+46 . 百度学术
48. 王广明,陈羽,贾尚帅,张文敏,李启良. 时速400 km高速列车转向架区域气动噪声控制. 声学技术. 2022(01): 88-95 . 百度学术
49. 郑海洋. 无孔连接技术在高铁轨道电路连接中的应用. 今日制造与升级. 2022(01): 92-94 . 百度学术
50. 丁叁叁. 中国高速列车被动安全技术研究进展及思考. 中南大学学报(自然科学版). 2022(05): 1547-1558 . 百度学术
51. 陈东东,肖守讷,阳光武,杨冰,朱涛,王明猛,邓永权. 触发机制对复合材料吸能结构轴向压溃行为的影响. 中南大学学报(自然科学版). 2022(05): 1804-1812 . 百度学术
52. 姚曙光,周雪飞,许平,乔毓宁. 高速列车排障装置安全防护性能演化综述. 中南大学学报(自然科学版). 2022(05): 1559-1571 . 百度学术
53. 王美琪 ,王艺 ,陈恩利 ,刘永强 ,刘鹏飞 . 基于恒等映射多层极限学习机的高速列车踏面磨耗预测模型. 力学学报. 2022(06): 1720-1731 . 本站查看
54. 杨志刚,刘嘉楠,陈羽. 开口式风洞高速列车头车气动实验模型选取方法. 同济大学学报(自然科学版). 2022(07): 1035-1043 . 百度学术
55. 车士俊,张明睿. 复合材料在轨道交通中的应用综述. 纤维复合材料. 2022(02): 100-104 . 百度学术
56. 李桂莲. 高速动车组全生命周期数据要素分类与编码研究. 铁道机车与动车. 2022(07): 11-14+22 . 百度学术
57. 韦斌,唐飞,谭晓明. 非线性范畴微气压波快速预测模型. 交通科技与经济. 2022(04): 55-60 . 百度学术
58. 顾晓辉 ,杨绍普 ,刘文朋 ,刘泽潮 . 高速列车轴箱轴承健康监测与故障诊断研究综述. 力学学报. 2022(07): 1780-1796 . 本站查看
59. 邓彩艳,曾超,龚宝明,王金生,王东坡. 基于数值方法的超声疲劳应力计算方法修正及应用. 焊接学报. 2022(07): 1-6+113 . 百度学术
60. 郭恒,黎荣,张海柱,魏永杰,戴钺滨. 多域融合的高速列车维修性设计知识图谱构建. 中国机械工程. 2022(24): 3015-3023 . 百度学术
61. 吴圣川,罗艳,王文静,李永恒,胡春明. 异物致损铁道车轴的疲劳强度及寿命评估. 力学学报. 2021(01): 84-95 . 本站查看
62. 肖望强,叶淑祯,王兴民,贾尚帅,潘德阔,卢大军. 动车组车体端墙粒子阻尼器减振的数值分析与实验研究. 中国机械工程. 2021(04): 481-489 . 百度学术
63. 朱剑月,张清,徐凡斐,刘林芽,圣小珍. 高速列车气动噪声研究综述. 交通运输工程学报. 2021(03): 39-56 . 百度学术
64. 吴学瑞,秦东宾,郭宗斌,涂贵军. 无油活塞式空压机的设计与试验验证. 电力机车与城轨车辆. 2021(05): 51-54 . 百度学术
65. 熊嘉阳,沈志云. 中国高速铁路的崛起和今后的发展. 交通运输工程学报. 2021(05): 6-29 . 百度学术
66. 陈羽,刘嘉楠,杨志刚,毛懋,王毅刚. 高速列车转向架区域气动噪声风洞实验研究. 空气动力学学报. 2021(05): 111-119 . 百度学术
67. 丁叁叁. 智能列车助力智慧城轨发展. 智慧轨道交通. 2021(05): 1-8 . 百度学术
其他类型引用(194)
计量
- 文章访问数: 3524
- HTML全文浏览量: 819
- PDF下载量: 1042
- 被引次数: 261