EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湍流边界层等动量区演化机理的实验研究

王超伟 王康俊 李彪辉 姜楠

王超伟, 王康俊, 李彪辉, 姜楠. 湍流边界层等动量区演化机理的实验研究[J]. 力学学报, 2021, 53(3): 761-772. doi: 10.6052/0459-1879-20-223
引用本文: 王超伟, 王康俊, 李彪辉, 姜楠. 湍流边界层等动量区演化机理的实验研究[J]. 力学学报, 2021, 53(3): 761-772. doi: 10.6052/0459-1879-20-223
Wang Chaowei, Wang Kangjun, Li Biaohui, Jiang Nan. EXPERIMENTAL INVESTIGATION ON THE EVOLUTION MECHANISM OF UNIFORM MOMENTUM ZONES IN TURBULENT BOUNDARY LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 761-772. doi: 10.6052/0459-1879-20-223
Citation: Wang Chaowei, Wang Kangjun, Li Biaohui, Jiang Nan. EXPERIMENTAL INVESTIGATION ON THE EVOLUTION MECHANISM OF UNIFORM MOMENTUM ZONES IN TURBULENT BOUNDARY LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 761-772. doi: 10.6052/0459-1879-20-223

湍流边界层等动量区演化机理的实验研究

doi: 10.6052/0459-1879-20-223
基金项目: 1) 国家自然科学基金(11732010);国家自然科学基金(11972251);国家自然科学基金(11872272);国家自然科学基金(11902218);国家自然科学基金(11802195);国家重点研发计划(2018YFC0705300)
详细信息
    作者简介:

    2) 姜楠,教授,主要研究方向:实验流体力学,湍流. E-mail: nanj@tju.edu.cn

    通讯作者:

    姜楠

  • 中图分类号: O357.5

EXPERIMENTAL INVESTIGATION ON THE EVOLUTION MECHANISM OF UNIFORM MOMENTUM ZONES IN TURBULENT BOUNDARY LAYER

  • 摘要: 等动量区是瞬时流场中流体动量接近的局部区域,其生成和分布与相干结构密切相关. 对等动量区的研究有助于更深入认识湍流边界层相干结构,但目前对其演化过程还缺乏实验支持和机理分析. 设计并使用移动式高时间分辨率粒子图像测速技术(TRPIV)系统对光滑平板湍流边界层进行了跟踪测量,用滤波方式对数据进行降噪,结合对直接数值模拟数据的插值结果,获得脉动速度信号. 使用改进方法去掉非湍流的影响,检测边界层内的等动量区,得到其数量的时间序列,结合流向速度概率密度函数分布的变化,分析得出了等动量区的数量在大的时间尺度下从一个稳态到另一个稳态的阶梯状变化特点. 分解不同尺度的脉动速度,对大尺度和小尺度脉动信号进行条件平均,发现大尺度脉动对等动量区数量变化起主要作用,表现为不同速度流体通过发生不同猝发事件改变流向速度概率密度函数分布. 分析流向大尺度脉动空间分布的变化,发现等动量区内常含有多个大尺度脉动区域,不同区域的扩张、收缩、分裂、合并影响流向速度的集中程度,进而导致等动量区数量的变化.

     

  • [1] Robinson SK. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991,23(1):601-639
    [2] Adrian RJ. Hairpin vortex organization in wall turbulence. Physics of Fluids, 2007,19(4):41301
    [3] 许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015,45(1):111-140

    (Xu Chunxiao. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 2015,45(1):111-140 (in Chinese))
    [4] Marusic I, Mckeon BJ, Monkewitz PA, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Physics of Fluids, 2010,22(6):1-58
    [5] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 1987,177:133-166
    [6] Adrian RJ, Meinhart CD, Tomkins CD. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 2000,422:1-54
    [7] Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 1999,387:353-396
    [8] Christensen KT, Adrian RJ. Statistical evidence of hairpin vortex packets in wall turbulence. Journal of Fluid Mechanics, 2001,431:433-443
    [9] Tomkins CD, Adrian RJ. Spanwise structure and scale growth in turbulent boundary layers. Journal of Fluid Mechanics, 2003,490:37-74
    [10] Head MR, Bandyopadhyay P. New aspects of turbulent boundary-layer structure. Journal of Fluid Mechanics, 1981,107:297-338.
    [11] Meinhart CD, Adrian RJ. On the existence of uniform momentum zones in a turbulent boundary layer. Physics of Fluids, 1995,7(4):694-696
    [12] 姚易辰, 许春晓. 壁湍流等动量区对惯性颗粒分布的影响. 空气动力学学报, 2020,38(1):107-117

    (Yao Yichen, Xu Chunxiao. Influence of uniform momentum zone on inertial particle distribution in wall turbulence. Acta Aerodynamica Sinics, 2020,38(1):107-117 (in Chinese))
    [13] Kwon YS, Philip J, de Silva CM, et al. The quiescent core of turbulent channel flow. Journal of Fluid Mechanics, 2014,751:228-254
    [14] de Silva CM, Hutchins N, Marusic I. Uniform momentum zones in turbulent boundary layers. Journal of Fluid Mechanics, 2016,786:309-331
    [15] de Silva CM, Philip J, Hutchins N, et al. Interfaces of uniform momentum zones in turbulent boundary layers. Journal of Fluid Mechanics, 2017,820:451-478
    [16] Laskari A, de Kat R, Hearst RJ, et al. Time evolution of uniform momentum zones in a turbulent boundary layer. Journal of Fluid Mechanics, 2018,842:554-590.
    [17] Lee JH, Sung HJ. Very-large-scale motions in a turbulent boundary layer. Journal of Fluid Mechanics, 2011,673:80-120.
    [18] Thavamani A, Cuvier C, Willert C, et al. Characterisation of uniform momentum zones in adverse pressure gradient turbulent boundary layers. Experimental Thermal and Fluid Science, 2020,115:110080
    [19] Cuvier C, Srinath S, Stanislas M, et al. Extensive characterisation of a high Reynolds number decelerating boundary layer using advanced optical metrology. Journal of Turbulence, 2017: 1-44
    [20] Cui G, Pan C, Di Wu, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer. Chinese Journal of Aeronautics, 2019,32(11):2433-2442
    [21] Gui L, Longo J, Stern F. Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512. Experiments in Fluids, 2001,31(3):336-346
    [22] Scarano F, Wijk CV, Veldhuis L. Traversing field of view and AR-PIV for mid-field wake vortex investigation in a towing tank. Experiments in Fluids, 2002,33(6):950-961
    [23] Chen JH, Chang CC. A moving PIV system for ship model test in a towing tank. Ocean Engineering, 2006,33(14-15):2025-2046
    [24] Gao Q, Ortiz-Duenas CK, Longmire E. Evolution of coherent structures in turbulent boundary layers based on moving tomographic PIV. Experiments in Fluids, 2013,54(12):1625
    [25] 高天达, 孙姣, 范赢, 等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110

    (Gao Tianda, Sun Jiao, Fan Ying, et al. PIV experimental investigation on the behavior of particles in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110 (in Chinese))
    [26] 田海平, 伊兴睿, 钟山, 等. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究. 力学学报, 2020,52(6):1666-1677

    (Tian Haiping, Yin Xingrui, Zhong Shan, et al. Experimental study on quantitative measurement of three-dimensional structure of hairpin vortex by Stereo-PIV. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1666-1677 (in Chinese))
    [27] 王康俊, 白建侠, 唐湛棋, 等. 用平均速度剖面法测量湍流边界层壁面摩擦速度的对比研究. 实验力学, 2019,34(2):209-216

    (Wang Kangjun, Bai Jianxia, Tang Zhanqi, et al. Comparative study of turbulent boundary layer wall friction velocity measured by average velocity profile method. Journal of Experimental Mechanics, 2019,34(2):209-216 (in Chinese))
    [28] 潘光, 黄明明, 胡海豹, 等. Spalding公式在脊状表面湍壁摩擦力测量中的应用. 力学学报, 2009,41(1):15-20

    (Pan Guang, Huang Mingming, Hu Haibao, et al. Application of Spalding formula in wall friction stress measurement on riblet surface. Chinese Journal of Theoretical and Applied Mechanics, 2009,41(1):15-20 (in Chinese))
    [29] Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 2007,579:1-28
    [30] Schlatter P, ?rlü R. Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics, 2010,659:116-126
    [31] ?rlü R, Schlatter P. Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers. Experiments in Fluids, 2013,54(6)
    [32] Silva CMD, Philip J, Chauhan K, et al. Multiscale geometry and scaling of the turbulent-nonturbulent interface in high reynolds number boundary layers. Physical Review Letters, 2013,111(4):44501
    [33] 王帅杰, 崔晓通, 白建侠 等. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响. 力学学报, 2019,51(3):767-774

    (Pan Guang, Huang Mingming, Hu Haibao, et al. The effect of periodic perturbation on multi scales in a turbulent boundary layer flow under drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):767-774 (in Chinese))
  • 加载中
计量
  • 文章访问数:  415
  • HTML全文浏览量:  103
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-27
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回