EXPERIMENTAL INVESTIGATION ON THE EVOLUTION MECHANISM OF UNIFORM MOMENTUM ZONES IN TURBULENT BOUNDARY LAYER
-
摘要: 等动量区是瞬时流场中流体动量接近的局部区域,其生成和分布与相干结构密切相关. 对等动量区的研究有助于更深入认识湍流边界层相干结构,但目前对其演化过程还缺乏实验支持和机理分析. 设计并使用移动式高时间分辨率粒子图像测速技术(TRPIV)系统对光滑平板湍流边界层进行了跟踪测量,用滤波方式对数据进行降噪,结合对直接数值模拟数据的插值结果,获得脉动速度信号. 使用改进方法去掉非湍流的影响,检测边界层内的等动量区,得到其数量的时间序列,结合流向速度概率密度函数分布的变化,分析得出了等动量区的数量在大的时间尺度下从一个稳态到另一个稳态的阶梯状变化特点. 分解不同尺度的脉动速度,对大尺度和小尺度脉动信号进行条件平均,发现大尺度脉动对等动量区数量变化起主要作用,表现为不同速度流体通过发生不同猝发事件改变流向速度概率密度函数分布. 分析流向大尺度脉动空间分布的变化,发现等动量区内常含有多个大尺度脉动区域,不同区域的扩张、收缩、分裂、合并影响流向速度的集中程度,进而导致等动量区数量的变化.Abstract: Uniform momentum zone is one type of local regions where the instantaneous momentum of fluid approaches, and its generation and distribution are closely related to the coherent structure. The study of uniform momentum zone contributes to further understanding of the coherent structure in turbulent boundary layers, but there is still a lack of experimental support and mechanism analysis for the evolution process of uniform momentum zone. The moving TRPIV system was designed and used to measure the velocity fields of the turbulent boundary layer on a smooth surface as it moved downstream. The data is denoised by filtering, and the fluctuating velocity signal is obtained by combining the interpolation results of the direct numerical simulation data. After the influence of non-turbulence removed by an improved method,this thesis detects the uniform momentum zone in turbulent boundary layer, and obtain the time series of its quantity. In combination with the change of the streamwise velocity probability density distribution, the stepwise variation in the number of uniform momentum regions from one steady state to another over large time scales is obtained. The fluctuating velocity of different scales was decomposed, and the conditional average of large-scale and small-scale fluctuation signals were carried out. The results show that the large-scale fluctuations play a major role in the quantity change of the uniform momentum zone, the action mode is that the probability density function distribution of streamwise velocity is changed by different burst events of fluid in different velocities. By analyzing the changes of different fluctuation regions in the streamwise large-scale fluctuation space, it is found that a uniform momentum zone often contains multiple large-scale fluctuation regions. The expansion, contraction, splitting and merging of different large-scale fluctuation regions affect the concentration degree of streamwise velocity, leading to significant changes of the number of uniform momentum zones.
-
-
[1] Robinson SK. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991,23(1):601-639 [2] Adrian RJ. Hairpin vortex organization in wall turbulence. Physics of Fluids, 2007,19(4):41301 [3] 许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015,45(1):111-140 (Xu Chunxiao. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 2015,45(1):111-140 (in Chinese))
[4] Marusic I, Mckeon BJ, Monkewitz PA, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Physics of Fluids, 2010,22(6):1-58 [5] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 1987,177:133-166 [6] Adrian RJ, Meinhart CD, Tomkins CD. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 2000,422:1-54 [7] Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 1999,387:353-396 [8] Christensen KT, Adrian RJ. Statistical evidence of hairpin vortex packets in wall turbulence. Journal of Fluid Mechanics, 2001,431:433-443 [9] Tomkins CD, Adrian RJ. Spanwise structure and scale growth in turbulent boundary layers. Journal of Fluid Mechanics, 2003,490:37-74 [10] Head MR, Bandyopadhyay P. New aspects of turbulent boundary-layer structure. Journal of Fluid Mechanics, 1981,107:297-338. [11] Meinhart CD, Adrian RJ. On the existence of uniform momentum zones in a turbulent boundary layer. Physics of Fluids, 1995,7(4):694-696 [12] 姚易辰, 许春晓. 壁湍流等动量区对惯性颗粒分布的影响. 空气动力学学报, 2020,38(1):107-117 (Yao Yichen, Xu Chunxiao. Influence of uniform momentum zone on inertial particle distribution in wall turbulence. Acta Aerodynamica Sinics, 2020,38(1):107-117 (in Chinese))
[13] Kwon YS, Philip J, de Silva CM, et al. The quiescent core of turbulent channel flow. Journal of Fluid Mechanics, 2014,751:228-254 [14] de Silva CM, Hutchins N, Marusic I. Uniform momentum zones in turbulent boundary layers. Journal of Fluid Mechanics, 2016,786:309-331 [15] de Silva CM, Philip J, Hutchins N, et al. Interfaces of uniform momentum zones in turbulent boundary layers. Journal of Fluid Mechanics, 2017,820:451-478 [16] Laskari A, de Kat R, Hearst RJ, et al. Time evolution of uniform momentum zones in a turbulent boundary layer. Journal of Fluid Mechanics, 2018,842:554-590. [17] Lee JH, Sung HJ. Very-large-scale motions in a turbulent boundary layer. Journal of Fluid Mechanics, 2011,673:80-120. [18] Thavamani A, Cuvier C, Willert C, et al. Characterisation of uniform momentum zones in adverse pressure gradient turbulent boundary layers. Experimental Thermal and Fluid Science, 2020,115:110080 [19] Cuvier C, Srinath S, Stanislas M, et al. Extensive characterisation of a high Reynolds number decelerating boundary layer using advanced optical metrology. Journal of Turbulence, 2017: 1-44 [20] Cui G, Pan C, Di Wu, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer. Chinese Journal of Aeronautics, 2019,32(11):2433-2442 [21] Gui L, Longo J, Stern F. Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512. Experiments in Fluids, 2001,31(3):336-346 [22] Scarano F, Wijk CV, Veldhuis L. Traversing field of view and AR-PIV for mid-field wake vortex investigation in a towing tank. Experiments in Fluids, 2002,33(6):950-961 [23] Chen JH, Chang CC. A moving PIV system for ship model test in a towing tank. Ocean Engineering, 2006,33(14-15):2025-2046 [24] Gao Q, Ortiz-Duenas CK, Longmire E. Evolution of coherent structures in turbulent boundary layers based on moving tomographic PIV. Experiments in Fluids, 2013,54(12):1625 [25] 高天达, 孙姣, 范赢, 等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110 (Gao Tianda, Sun Jiao, Fan Ying, et al. PIV experimental investigation on the behavior of particles in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110 (in Chinese))
[26] 田海平, 伊兴睿, 钟山, 等. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究. 力学学报, 2020,52(6):1666-1677 (Tian Haiping, Yin Xingrui, Zhong Shan, et al. Experimental study on quantitative measurement of three-dimensional structure of hairpin vortex by Stereo-PIV. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1666-1677 (in Chinese))
[27] 王康俊, 白建侠, 唐湛棋, 等. 用平均速度剖面法测量湍流边界层壁面摩擦速度的对比研究. 实验力学, 2019,34(2):209-216 (Wang Kangjun, Bai Jianxia, Tang Zhanqi, et al. Comparative study of turbulent boundary layer wall friction velocity measured by average velocity profile method. Journal of Experimental Mechanics, 2019,34(2):209-216 (in Chinese))
[28] 潘光, 黄明明, 胡海豹, 等. Spalding公式在脊状表面湍壁摩擦力测量中的应用. 力学学报, 2009,41(1):15-20 (Pan Guang, Huang Mingming, Hu Haibao, et al. Application of Spalding formula in wall friction stress measurement on riblet surface. Chinese Journal of Theoretical and Applied Mechanics, 2009,41(1):15-20 (in Chinese))
[29] Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 2007,579:1-28 [30] Schlatter P, ?rlü R. Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics, 2010,659:116-126 [31] ?rlü R, Schlatter P. Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers. Experiments in Fluids, 2013,54(6) [32] Silva CMD, Philip J, Chauhan K, et al. Multiscale geometry and scaling of the turbulent-nonturbulent interface in high reynolds number boundary layers. Physical Review Letters, 2013,111(4):44501 [33] 王帅杰, 崔晓通, 白建侠 等. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响. 力学学报, 2019,51(3):767-774 (Pan Guang, Huang Mingming, Hu Haibao, et al. The effect of periodic perturbation on multi scales in a turbulent boundary layer flow under drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):767-774 (in Chinese))
-
期刊类型引用(4)
1. 陈怡纯,田海平,马国祯,陈纪仲. 湍流边界层均匀动量区统计分形特性的PIV实验研究. 力学学报. 2024(01): 34-44 . 本站查看
2. 高紫涵,程肖岐,范子椰,姜楠. 基于变间隔空间平均的等动量区分布研究. 力学学报. 2024(08): 2193-2202 . 本站查看
3. 程肖岐,范子椰,唐湛棋,白建侠,姜楠. 壁湍流等动量区空间分布的实验研究. 实验流体力学. 2024(04): 21-28 . 百度学术
4. 王永强,胡春宏,张鹏,杨胜发,胡江,李文杰. 三峡库区黄花城河段环流结构与涡尺度特征初探. 水科学进展. 2022(02): 253-263 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 1191
- HTML全文浏览量: 312
- PDF下载量: 175
- 被引次数: 6