[1] |
杜修力. 工程波动理论与方法. 北京: 科学出版社, 2009(Du Xiuli. Theories and Methods of Wave Motion for Engineering. Beijing: Science Press, 2009 (in Chinese))
|
[2] |
Wolf JP, Paronesso A. Lumped-parameter model for a rigid cylindrical foundation embedded in a soil layer on rigid rock. Earthquake Engineering & Structural Dynamics, 1992,21(12):1021-1038
|
[3] |
Chen X, Birk C, Song C. Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method. Computers and Geotechnics, 2015,63:1-12
|
[4] |
Wang Y, Li F, Huang W. et al. The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. Journal of the Mechanics and Physics of Solids, 2008,56(4):1578-1590
|
[5] |
Lysmer J. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 1969,95:859-878
|
[6] |
Wolf J, Song C. Finite-Element Modelling of Unbounded Media. Wiley, 1996
|
[7] |
廖振鹏. 近场波动的数值模拟. 力学进展, 1997,27(2):193-212(Liao Zhenpeng. Stimulation of wave propagation in near field. Advances in Mechanics. 1997,27(2):193-212 (in Chinese))
|
[8] |
Givoli D. High-order local non-reflecting boundary conditions: A review. Wave Motion, 2004,39(4):319-326
|
[9] |
刘晶波, 李彬. 三维黏弹性静-动力统一人工边界. 中国科学: E 辑, 2005,35(9):966-980(Liu Jingbo, Li Bin. 3D viscoelastic static-dynamic artificial boundary. Science in China: Serial E. 2005,35(9):966-980 (in Chinese))
|
[10] |
杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件. 力学学报, 2006,38(1):49-56(Du Xiuli, Zhao Mi, Wang Jintin. A stress artificial boundary in FEA for near-field wave problem. Chinese Journal of Theoretical and Applied Mechanics. 2006,38(1):49-56 (in Chinese))
|
[11] |
章旭斌, 谢志南, 廖振鹏. SH波动模拟中透射边界反射放大失稳研究. 哈尔滨工程大学学报, 2019(6):1-6(Zhang Xubin, Xie Zhinan, Liao Zhenpeng. Study on reflection amplification instability of transmitting boundary in SH wave simulation. Journal of Harbin Engineering University, 2019(6):1-6 (in Chinese))
|
[12] |
谢志南, 郑永路, 章旭斌 等. 弱形式时域完美匹配层——滞弹性近场波动数值模拟. 地球物理学报, 2019,62(8):3140-3154(Xie Zhinan, Zheng Yonglu, Zhang Xubin, et al. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain. Chinese Journal of Geophysics. 2019,62(8):3140-3154 (in Chinese))
|
[13] |
宋崇民, 渠艳龄, 刘磊 等. 土-结构动力相互作用远场问题数值分析方法综述. 水力发电学报, 2019,38(9):1-17(Song Chongmin, Qu Yanling, Liu Lei, et al. A review of numerical methods for far-field modeling in dynamic soil-structure interaction systems. Journal of Hydroelectric Engineering. 2019,38(9):1-17 (in Chinese))
|
[14] |
Zhao C, Liu T. Non-reflecting artificial boundaries for transient scalar wave propagation in a two-dimensional infinite homogeneous layer. International Journal for Numerical Methods in Engineering, 2003,58(10):1435-1456
|
[15] |
Zhao M, Du X, Liu J. et al. Explicit finite element artificial boundary scheme for transient scalar waves in two-dimensional unbounded waveguide. International Journal for Numerical Methods in Engineering, 2011,87(11):1074-1104
|
[16] |
Li H, Zhao M, Wu L. et al. High-order absorbing boundary condition based on new continued fraction for transient scalar wave propagation in 2D and 3D unbounded layers. Engineering Computation, 2019,36(7):2445-2479
|
[17] |
Padrón L A, Aznárez JJ, Maeso O. Dynamic analysis of piled foundations in stratified soils by a BEM-FEM model. Soil Dynamics and Earthquake Engineering, 2008,28:333-346
|
[18] |
Kausel E. Thin-layer method: Formulation in the time domain. International Journal for Numerical Methods in Engineering, 1994,37(6):927-941
|
[19] |
Sun L, Pan Y, Gu W. High-order thin layer method for viscoelastic wave propagation in stratified media. Computer Methods in Applied Mechanics and Engineering, 2013,257:65-76
|
[20] |
Li H, Zhao M, Du X. Accurate H-shaped absorbing boundary condition in frequency domain for scalar wave propagation in layered half space. International Journal for Numerical Methods in Engineering, 2020, doi: 10.10021nme.6424
|
[21] |
Zhang G, Zhao M, Du X. et al. A frequency-dependent absorbing boundary condition for numerically solving u-U elastic wave equations in layered and fluid-saturated porous media. Soil Dynamics and Earthquake Engineering, 2020,135:106189
|
[22] |
Prempramote S, Song C, Tin-Loi F. et al. High-order doubly asymptotic open boundaries for scalar wave equation. International Journal for Numerical Methods in Engineering, 2009,79(3):340-374
|
[23] |
Wang X, Jin F, Prempramote S. et al. Time-domain analysis of gravity dam-reservoir interaction using high-order doubly asymptotic open boundary. Computers & Structures, 2011,89:668-680
|
[24] |
Birk C, Behnke R. A modified scaled boundary finite element method for three dimensional dynamic soil-structure interaction in layered soil. International Journal for Numerical Methods in Engineering, 2012,89:371-402
|
[25] |
Aslmand M, Kani I M, Birk C. et al. Dynamic soil-structure interaction in a 3D layered medium treated by coupling a semi-analytical axisymmetric far field formulation and a 3D finite element model. Soil Dynamics and Earthquake Engineering, 2018,115:531-544
|
[26] |
Liu T, Xu Q. Discrete artificial boundary conditions for transient scalar wave propagation in a 2D unbounded layered media. Computer Methods in Applied Mechanics and Engineering, 2002,191(27-28):3055-3071
|
[27] |
Badry RS, Ramancharla PK. Local absorbing boundary conditions to simulate wave propagation in unbounded viscoelastic domains. Computers & Structures, 2018,208:1-16
|
[28] |
Hagstrom T, Mar-Or A, Givoli D. High-order local absorbing conditions for the wave equation: Extensions and improvements. Journal of Computational Physics, 2008,227(6):3322-3357
|
[29] |
Duru K. A perfectly matched layer for the time-dependent wave equation in heterogeneous and layered media. Journal of Computational Physics, 2014,257:757-781
|
[30] |
Jiang X, Qi Y, Yuan J. An adaptive finite element PML method for the acoustic scattering problems in layered media. Communications in Computational Physics, 2019,25(1):266-288
|
[31] |
Liu T, Zhao C. Finite element modeling of wave propagation problems in multilayered soils resting on a rigid base. Computers and Geotechnics, 2010,37(3):248-257
|
[32] |
Zhao M, Wu L, Du X. et al. Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media. Computer Methods in Applied Mechanics and Engineering, 2018,334:111-137
|
[33] |
吴利华, 赵密, 杜修力. 黏弹性多层介质中 SH 波动的一种吸收边界条件. 力学学报, 2020,52(2):480-490(Wu Lihua, Zhao Mi, Du Xiuli. An absorbing boundary condition for SH wave propagation in viscoelastic multilayered media. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(2):480-490 (in Chinese))
|
[34] |
高毅超, 徐艳杰, 金峰. 一种模拟弹性波在层状地基中传播的简化高阶双渐近透射边界. 中国科学: 技术科学, 2016(5):527-534(Gao Yichao, Xu Yanjie, Jin Feng, et al. A simplified high order doubly asymptotic open boundary for modeling elastic wave propagation in layered foundation. Scientia Sinica Techologica, 2016(5):527-534 (in Chinese))
|
[35] |
Liu T, Zheng S, Tang X. et al. Time-domain analysis of underground station-layered soil interaction based on high-order doubly asymptotic transmitting boundary. Computer Modeling in Engineering & Sciences, 2019,120(3):545-560
|
[36] |
刘晶波, 杜修力. 结构动力学. 北京: 机械工业出版社, 2005(Liu Jingbo, Du Xiuli. Dynamics of Structures. Beijing: China Machine Press, 2005 (in Chinese))
|
[37] |
许紫刚, 杜修力, 许成顺 等. 地下结构地震反应分析中场地瑞利阻尼构建方法比较研究. 岩土力学, 2019(12):33(Xu Zigang, Du Xiuli, Xu Chengshun, et al. Comparison of determination method of site Rayleigh damping coefficients in seismic responses analysis of underground structures. Rock and Soil Mechanics, 2019(12):33 (in Chinese))
|