A TIME-DOMAIN ARTIFICIAL BOUNDARY CONDITION FOR VECTOR WAVE IN MULTILAYERED WAVEGUIDE
-
摘要: 本文提出了一种近似的时域人工边界条件(artificial boundary condition, ABC)用来模拟含有瑞利阻尼的线弹性多层波导平面内的矢量波动,该ABC是时域稳定的, 且能与有限元法无缝耦合. 建立ABC的思路是,首先将多层波导的矢量波动方程简化为$x$方向和$y$方向解耦的两个标量波动方程;其次基于比例边界有限元法得到无限域$x$方向和$y$方向模态空间下半离散的频域动力刚度,再用矩阵连分式近似表示$x$方向和$y$方向的频域动力刚度;最后通过辅助变量技术将连分式时域化,从而分别得到人工边界上$x$方向和$y$方向的时域ABC.方法中影响计算精度和计算效率的参数有无限域的模态数$n$、连分式阶数$J$和人工边界远离兴趣域的距离$L$. 数值算例表明,仅需将被载荷激起的无限域的模态数$n$参与计算, 一般可以取$J$=3,$L$的取值基本与地下结构尺寸无关, 它与土层的总层高$H$成正比关系,关系系数与土层的材料参数有关.Abstract: A time-domain artificial boundary condition (ABC) is proposed to simulate the in-plane vector wave in a linear elastic multilayered waveguide with Rayleigh damping. The ABC is stable and can be seamlessly coupled with the finite element method. First, the vector wave equations of the multilayered waveguide are simplified to two scalar wave equations, which are decoupled in both $x$ and $y$ directions. Then, based on the scaled boundary finite element method, semi-discrete frequency-domain dynamic stiffness in the modal space is obtained. The dynamic stiffness can be approximately expressed as matrix continued fraction. Finally, the continued fraction is converted to the time-domain ABC by introducing the auxiliary variable technique. In this method, the parameters affecting the calculation accuracy and efficiency include the mode number $n$, the order $J$ of continued fraction, and the distance $L$ from the artificial boundary to the region of interest. Numerical examples show that only the mode numbers of the infinite domain excited by the load have to be used. $J$=3 can be taken generally. The value of $L$ is independent of the size of the underground structure. But it is proportional to the total height $H$ of the soil layer, and the relation coefficient is related to the material parameters of the soil layer.
-
-
[1] 杜修力. 工程波动理论与方法. 北京: 科学出版社, 2009 (Du Xiuli. Theories and Methods of Wave Motion for Engineering. Beijing: Science Press, 2009 (in Chinese))
[2] Wolf JP, Paronesso A. Lumped-parameter model for a rigid cylindrical foundation embedded in a soil layer on rigid rock. Earthquake Engineering & Structural Dynamics, 1992,21(12):1021-1038 [3] Chen X, Birk C, Song C. Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method. Computers and Geotechnics, 2015,63:1-12 [4] Wang Y, Li F, Huang W. et al. The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. Journal of the Mechanics and Physics of Solids, 2008,56(4):1578-1590 [5] Lysmer J. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 1969,95:859-878 [6] Wolf J, Song C. Finite-Element Modelling of Unbounded Media. Wiley, 1996 [7] 廖振鹏. 近场波动的数值模拟. 力学进展, 1997,27(2):193-212 (Liao Zhenpeng. Stimulation of wave propagation in near field. Advances in Mechanics. 1997,27(2):193-212 (in Chinese))
[8] Givoli D. High-order local non-reflecting boundary conditions: A review. Wave Motion, 2004,39(4):319-326 [9] 刘晶波, 李彬. 三维黏弹性静-动力统一人工边界. 中国科学: E 辑, 2005,35(9):966-980 (Liu Jingbo, Li Bin. 3D viscoelastic static-dynamic artificial boundary. Science in China: Serial E. 2005,35(9):966-980 (in Chinese))
[10] 杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件. 力学学报, 2006,38(1):49-56 (Du Xiuli, Zhao Mi, Wang Jintin. A stress artificial boundary in FEA for near-field wave problem. Chinese Journal of Theoretical and Applied Mechanics. 2006,38(1):49-56 (in Chinese))
[11] 章旭斌, 谢志南, 廖振鹏. SH波动模拟中透射边界反射放大失稳研究. 哈尔滨工程大学学报, 2019(6):1-6 (Zhang Xubin, Xie Zhinan, Liao Zhenpeng. Study on reflection amplification instability of transmitting boundary in SH wave simulation. Journal of Harbin Engineering University, 2019(6):1-6 (in Chinese))
[12] 谢志南, 郑永路, 章旭斌 等. 弱形式时域完美匹配层——滞弹性近场波动数值模拟. 地球物理学报, 2019,62(8):3140-3154 (Xie Zhinan, Zheng Yonglu, Zhang Xubin, et al. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain. Chinese Journal of Geophysics. 2019,62(8):3140-3154 (in Chinese))
[13] 宋崇民, 渠艳龄, 刘磊 等. 土-结构动力相互作用远场问题数值分析方法综述. 水力发电学报, 2019,38(9):1-17 (Song Chongmin, Qu Yanling, Liu Lei, et al. A review of numerical methods for far-field modeling in dynamic soil-structure interaction systems. Journal of Hydroelectric Engineering. 2019,38(9):1-17 (in Chinese))
[14] Zhao C, Liu T. Non-reflecting artificial boundaries for transient scalar wave propagation in a two-dimensional infinite homogeneous layer. International Journal for Numerical Methods in Engineering, 2003,58(10):1435-1456 [15] Zhao M, Du X, Liu J. et al. Explicit finite element artificial boundary scheme for transient scalar waves in two-dimensional unbounded waveguide. International Journal for Numerical Methods in Engineering, 2011,87(11):1074-1104 [16] Li H, Zhao M, Wu L. et al. High-order absorbing boundary condition based on new continued fraction for transient scalar wave propagation in 2D and 3D unbounded layers. Engineering Computation, 2019,36(7):2445-2479 [17] Padrón L A, Aznárez JJ, Maeso O. Dynamic analysis of piled foundations in stratified soils by a BEM-FEM model. Soil Dynamics and Earthquake Engineering, 2008,28:333-346 [18] Kausel E. Thin-layer method: Formulation in the time domain. International Journal for Numerical Methods in Engineering, 1994,37(6):927-941 [19] Sun L, Pan Y, Gu W. High-order thin layer method for viscoelastic wave propagation in stratified media. Computer Methods in Applied Mechanics and Engineering, 2013,257:65-76 [20] Li H, Zhao M, Du X. Accurate H-shaped absorbing boundary condition in frequency domain for scalar wave propagation in layered half space. International Journal for Numerical Methods in Engineering, 2020, doi: 10.10021nme.6424 [21] Zhang G, Zhao M, Du X. et al. A frequency-dependent absorbing boundary condition for numerically solving u-U elastic wave equations in layered and fluid-saturated porous media. Soil Dynamics and Earthquake Engineering, 2020,135:106189 [22] Prempramote S, Song C, Tin-Loi F. et al. High-order doubly asymptotic open boundaries for scalar wave equation. International Journal for Numerical Methods in Engineering, 2009,79(3):340-374 [23] Wang X, Jin F, Prempramote S. et al. Time-domain analysis of gravity dam-reservoir interaction using high-order doubly asymptotic open boundary. Computers & Structures, 2011,89:668-680 [24] Birk C, Behnke R. A modified scaled boundary finite element method for three dimensional dynamic soil-structure interaction in layered soil. International Journal for Numerical Methods in Engineering, 2012,89:371-402 [25] Aslmand M, Kani I M, Birk C. et al. Dynamic soil-structure interaction in a 3D layered medium treated by coupling a semi-analytical axisymmetric far field formulation and a 3D finite element model. Soil Dynamics and Earthquake Engineering, 2018,115:531-544 [26] Liu T, Xu Q. Discrete artificial boundary conditions for transient scalar wave propagation in a 2D unbounded layered media. Computer Methods in Applied Mechanics and Engineering, 2002,191(27-28):3055-3071 [27] Badry RS, Ramancharla PK. Local absorbing boundary conditions to simulate wave propagation in unbounded viscoelastic domains. Computers & Structures, 2018,208:1-16 [28] Hagstrom T, Mar-Or A, Givoli D. High-order local absorbing conditions for the wave equation: Extensions and improvements. Journal of Computational Physics, 2008,227(6):3322-3357 [29] Duru K. A perfectly matched layer for the time-dependent wave equation in heterogeneous and layered media. Journal of Computational Physics, 2014,257:757-781 [30] Jiang X, Qi Y, Yuan J. An adaptive finite element PML method for the acoustic scattering problems in layered media. Communications in Computational Physics, 2019,25(1):266-288 [31] Liu T, Zhao C. Finite element modeling of wave propagation problems in multilayered soils resting on a rigid base. Computers and Geotechnics, 2010,37(3):248-257 [32] Zhao M, Wu L, Du X. et al. Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media. Computer Methods in Applied Mechanics and Engineering, 2018,334:111-137 [33] 吴利华, 赵密, 杜修力. 黏弹性多层介质中 SH 波动的一种吸收边界条件. 力学学报, 2020,52(2):480-490 (Wu Lihua, Zhao Mi, Du Xiuli. An absorbing boundary condition for SH wave propagation in viscoelastic multilayered media. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(2):480-490 (in Chinese))
[34] 高毅超, 徐艳杰, 金峰. 一种模拟弹性波在层状地基中传播的简化高阶双渐近透射边界. 中国科学: 技术科学, 2016(5):527-534 (Gao Yichao, Xu Yanjie, Jin Feng, et al. A simplified high order doubly asymptotic open boundary for modeling elastic wave propagation in layered foundation. Scientia Sinica Techologica, 2016(5):527-534 (in Chinese))
[35] Liu T, Zheng S, Tang X. et al. Time-domain analysis of underground station-layered soil interaction based on high-order doubly asymptotic transmitting boundary. Computer Modeling in Engineering & Sciences, 2019,120(3):545-560 [36] 刘晶波, 杜修力. 结构动力学. 北京: 机械工业出版社, 2005 (Liu Jingbo, Du Xiuli. Dynamics of Structures. Beijing: China Machine Press, 2005 (in Chinese))
[37] 许紫刚, 杜修力, 许成顺 等. 地下结构地震反应分析中场地瑞利阻尼构建方法比较研究. 岩土力学, 2019(12):33 (Xu Zigang, Du Xiuli, Xu Chengshun, et al. Comparison of determination method of site Rayleigh damping coefficients in seismic responses analysis of underground structures. Rock and Soil Mechanics, 2019(12):33 (in Chinese))
-
期刊类型引用(3)
1. 李鑫,唐贞云,杜修力. 半无限介质多自由度频响函数离散时间有理近似的稳定参数识别. 工程力学. 2024(08): 1-10 . 百度学术
2. 李小军,张恂,邢浩洁. 基于动态人工波速的透射边界. 力学学报. 2024(10): 2924-2935 . 本站查看
3. 胡云飞,赵前进. 保斜渐近线和垂直渐近线的连分式插值. 洛阳师范学院学报. 2023(08): 1-8 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 877
- HTML全文浏览量: 136
- PDF下载量: 65
- 被引次数: 6