EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层波导中矢量波动的时域人工边界条件

吴利华 赵密 杜修力

吴利华, 赵密, 杜修力. 多层波导中矢量波动的时域人工边界条件[J]. 力学学报, 2021, 53(2): 554-567. doi: 10.6052/0459-1879-20-213
引用本文: 吴利华, 赵密, 杜修力. 多层波导中矢量波动的时域人工边界条件[J]. 力学学报, 2021, 53(2): 554-567. doi: 10.6052/0459-1879-20-213
Wu Lihua, Zhao Mi, Du Xiuli. A TIME-DOMAIN ARTIFICIAL BOUNDARY CONDITION FOR VECTOR WAVE IN MULTILAYERED WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 554-567. doi: 10.6052/0459-1879-20-213
Citation: Wu Lihua, Zhao Mi, Du Xiuli. A TIME-DOMAIN ARTIFICIAL BOUNDARY CONDITION FOR VECTOR WAVE IN MULTILAYERED WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 554-567. doi: 10.6052/0459-1879-20-213

多层波导中矢量波动的时域人工边界条件

doi: 10.6052/0459-1879-20-213
基金项目: 1) 北京市自然科学基金(JQ19029);国家自然科学基金(51678015);中国教育部创新团队资助项目(IRT_17R03)
详细信息
    作者简介:

    2) 赵密,教授,主要研究方向:土-结动力相互作用. E-mail: zhaomi@bjut.edu.cn

    通讯作者:

    赵密

  • 中图分类号: O241

A TIME-DOMAIN ARTIFICIAL BOUNDARY CONDITION FOR VECTOR WAVE IN MULTILAYERED WAVEGUIDE

  • 摘要: 本文提出了一种近似的时域人工边界条件(artificial boundary condition, ABC)用来模拟含有瑞利阻尼的线弹性多层波导平面内的矢量波动,该ABC是时域稳定的, 且能与有限元法无缝耦合. 建立ABC的思路是,首先将多层波导的矢量波动方程简化为$x$方向和$y$方向解耦的两个标量波动方程;其次基于比例边界有限元法得到无限域$x$方向和$y$方向模态空间下半离散的频域动力刚度,再用矩阵连分式近似表示$x$方向和$y$方向的频域动力刚度;最后通过辅助变量技术将连分式时域化,从而分别得到人工边界上$x$方向和$y$方向的时域ABC.方法中影响计算精度和计算效率的参数有无限域的模态数$n$、连分式阶数$J$和人工边界远离兴趣域的距离$L$. 数值算例表明,仅需将被载荷激起的无限域的模态数$n$参与计算, 一般可以取$J$=3,$L$的取值基本与地下结构尺寸无关, 它与土层的总层高$H$成正比关系,关系系数与土层的材料参数有关.

     

  • [1] 杜修力. 工程波动理论与方法. 北京: 科学出版社, 2009

    (Du Xiuli. Theories and Methods of Wave Motion for Engineering. Beijing: Science Press, 2009 (in Chinese))
    [2] Wolf JP, Paronesso A. Lumped-parameter model for a rigid cylindrical foundation embedded in a soil layer on rigid rock. Earthquake Engineering & Structural Dynamics, 1992,21(12):1021-1038
    [3] Chen X, Birk C, Song C. Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method. Computers and Geotechnics, 2015,63:1-12
    [4] Wang Y, Li F, Huang W. et al. The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. Journal of the Mechanics and Physics of Solids, 2008,56(4):1578-1590
    [5] Lysmer J. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 1969,95:859-878
    [6] Wolf J, Song C. Finite-Element Modelling of Unbounded Media. Wiley, 1996
    [7] 廖振鹏. 近场波动的数值模拟. 力学进展, 1997,27(2):193-212

    (Liao Zhenpeng. Stimulation of wave propagation in near field. Advances in Mechanics. 1997,27(2):193-212 (in Chinese))
    [8] Givoli D. High-order local non-reflecting boundary conditions: A review. Wave Motion, 2004,39(4):319-326
    [9] 刘晶波, 李彬. 三维黏弹性静-动力统一人工边界. 中国科学: E 辑, 2005,35(9):966-980

    (Liu Jingbo, Li Bin. 3D viscoelastic static-dynamic artificial boundary. Science in China: Serial E. 2005,35(9):966-980 (in Chinese))
    [10] 杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件. 力学学报, 2006,38(1):49-56

    (Du Xiuli, Zhao Mi, Wang Jintin. A stress artificial boundary in FEA for near-field wave problem. Chinese Journal of Theoretical and Applied Mechanics. 2006,38(1):49-56 (in Chinese))
    [11] 章旭斌, 谢志南, 廖振鹏. SH波动模拟中透射边界反射放大失稳研究. 哈尔滨工程大学学报, 2019(6):1-6

    (Zhang Xubin, Xie Zhinan, Liao Zhenpeng. Study on reflection amplification instability of transmitting boundary in SH wave simulation. Journal of Harbin Engineering University, 2019(6):1-6 (in Chinese))
    [12] 谢志南, 郑永路, 章旭斌 等. 弱形式时域完美匹配层——滞弹性近场波动数值模拟. 地球物理学报, 2019,62(8):3140-3154

    (Xie Zhinan, Zheng Yonglu, Zhang Xubin, et al. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain. Chinese Journal of Geophysics. 2019,62(8):3140-3154 (in Chinese))
    [13] 宋崇民, 渠艳龄, 刘磊 等. 土-结构动力相互作用远场问题数值分析方法综述. 水力发电学报, 2019,38(9):1-17

    (Song Chongmin, Qu Yanling, Liu Lei, et al. A review of numerical methods for far-field modeling in dynamic soil-structure interaction systems. Journal of Hydroelectric Engineering. 2019,38(9):1-17 (in Chinese))
    [14] Zhao C, Liu T. Non-reflecting artificial boundaries for transient scalar wave propagation in a two-dimensional infinite homogeneous layer. International Journal for Numerical Methods in Engineering, 2003,58(10):1435-1456
    [15] Zhao M, Du X, Liu J. et al. Explicit finite element artificial boundary scheme for transient scalar waves in two-dimensional unbounded waveguide. International Journal for Numerical Methods in Engineering, 2011,87(11):1074-1104
    [16] Li H, Zhao M, Wu L. et al. High-order absorbing boundary condition based on new continued fraction for transient scalar wave propagation in 2D and 3D unbounded layers. Engineering Computation, 2019,36(7):2445-2479
    [17] Padrón L A, Aznárez JJ, Maeso O. Dynamic analysis of piled foundations in stratified soils by a BEM-FEM model. Soil Dynamics and Earthquake Engineering, 2008,28:333-346
    [18] Kausel E. Thin-layer method: Formulation in the time domain. International Journal for Numerical Methods in Engineering, 1994,37(6):927-941
    [19] Sun L, Pan Y, Gu W. High-order thin layer method for viscoelastic wave propagation in stratified media. Computer Methods in Applied Mechanics and Engineering, 2013,257:65-76
    [20] Li H, Zhao M, Du X. Accurate H-shaped absorbing boundary condition in frequency domain for scalar wave propagation in layered half space. International Journal for Numerical Methods in Engineering, 2020, doi: 10.10021nme.6424
    [21] Zhang G, Zhao M, Du X. et al. A frequency-dependent absorbing boundary condition for numerically solving u-U elastic wave equations in layered and fluid-saturated porous media. Soil Dynamics and Earthquake Engineering, 2020,135:106189
    [22] Prempramote S, Song C, Tin-Loi F. et al. High-order doubly asymptotic open boundaries for scalar wave equation. International Journal for Numerical Methods in Engineering, 2009,79(3):340-374
    [23] Wang X, Jin F, Prempramote S. et al. Time-domain analysis of gravity dam-reservoir interaction using high-order doubly asymptotic open boundary. Computers & Structures, 2011,89:668-680
    [24] Birk C, Behnke R. A modified scaled boundary finite element method for three dimensional dynamic soil-structure interaction in layered soil. International Journal for Numerical Methods in Engineering, 2012,89:371-402
    [25] Aslmand M, Kani I M, Birk C. et al. Dynamic soil-structure interaction in a 3D layered medium treated by coupling a semi-analytical axisymmetric far field formulation and a 3D finite element model. Soil Dynamics and Earthquake Engineering, 2018,115:531-544
    [26] Liu T, Xu Q. Discrete artificial boundary conditions for transient scalar wave propagation in a 2D unbounded layered media. Computer Methods in Applied Mechanics and Engineering, 2002,191(27-28):3055-3071
    [27] Badry RS, Ramancharla PK. Local absorbing boundary conditions to simulate wave propagation in unbounded viscoelastic domains. Computers & Structures, 2018,208:1-16
    [28] Hagstrom T, Mar-Or A, Givoli D. High-order local absorbing conditions for the wave equation: Extensions and improvements. Journal of Computational Physics, 2008,227(6):3322-3357
    [29] Duru K. A perfectly matched layer for the time-dependent wave equation in heterogeneous and layered media. Journal of Computational Physics, 2014,257:757-781
    [30] Jiang X, Qi Y, Yuan J. An adaptive finite element PML method for the acoustic scattering problems in layered media. Communications in Computational Physics, 2019,25(1):266-288
    [31] Liu T, Zhao C. Finite element modeling of wave propagation problems in multilayered soils resting on a rigid base. Computers and Geotechnics, 2010,37(3):248-257
    [32] Zhao M, Wu L, Du X. et al. Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media. Computer Methods in Applied Mechanics and Engineering, 2018,334:111-137
    [33] 吴利华, 赵密, 杜修力. 黏弹性多层介质中 SH 波动的一种吸收边界条件. 力学学报, 2020,52(2):480-490

    (Wu Lihua, Zhao Mi, Du Xiuli. An absorbing boundary condition for SH wave propagation in viscoelastic multilayered media. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(2):480-490 (in Chinese))
    [34] 高毅超, 徐艳杰, 金峰. 一种模拟弹性波在层状地基中传播的简化高阶双渐近透射边界. 中国科学: 技术科学, 2016(5):527-534

    (Gao Yichao, Xu Yanjie, Jin Feng, et al. A simplified high order doubly asymptotic open boundary for modeling elastic wave propagation in layered foundation. Scientia Sinica Techologica, 2016(5):527-534 (in Chinese))
    [35] Liu T, Zheng S, Tang X. et al. Time-domain analysis of underground station-layered soil interaction based on high-order doubly asymptotic transmitting boundary. Computer Modeling in Engineering & Sciences, 2019,120(3):545-560
    [36] 刘晶波, 杜修力. 结构动力学. 北京: 机械工业出版社, 2005

    (Liu Jingbo, Du Xiuli. Dynamics of Structures. Beijing: China Machine Press, 2005 (in Chinese))
    [37] 许紫刚, 杜修力, 许成顺 等. 地下结构地震反应分析中场地瑞利阻尼构建方法比较研究. 岩土力学, 2019(12):33

    (Xu Zigang, Du Xiuli, Xu Chengshun, et al. Comparison of determination method of site Rayleigh damping coefficients in seismic responses analysis of underground structures. Rock and Soil Mechanics, 2019(12):33 (in Chinese))
  • 加载中
计量
  • 文章访问数:  614
  • HTML全文浏览量:  90
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回