EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能

李正 杨庆生 尚军军 刘夏

李正, 杨庆生, 尚军军, 刘夏. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能[J]. 力学学报, 2020, 52(6): 1700-1708. doi: 10.6052/0459-1879-20-197
引用本文: 李正, 杨庆生, 尚军军, 刘夏. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能[J]. 力学学报, 2020, 52(6): 1700-1708. doi: 10.6052/0459-1879-20-197
Li Zheng, Yang Qingsheng, Shang Junjun, Liu Xia. PIEZORESISTIVE SENSING MECHANISM AND PIEZORESISTIVE PERFORMANCE OF IN-PLANE RANDOM STACKED GRAPHENE COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1700-1708. doi: 10.6052/0459-1879-20-197
Citation: Li Zheng, Yang Qingsheng, Shang Junjun, Liu Xia. PIEZORESISTIVE SENSING MECHANISM AND PIEZORESISTIVE PERFORMANCE OF IN-PLANE RANDOM STACKED GRAPHENE COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1700-1708. doi: 10.6052/0459-1879-20-197

面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能

doi: 10.6052/0459-1879-20-197
基金项目: 1) 国家自然科学基金资助项目(11772012);国家自然科学基金资助项目(11932002)
详细信息
    作者简介:

    2) 杨庆生, 教授, 主要研究方向: 新型材料与结构的力学性能分析. E-mail: qsyang@bjut.edu.cn

    通讯作者:

    杨庆生

  • 中图分类号: TB332

PIEZORESISTIVE SENSING MECHANISM AND PIEZORESISTIVE PERFORMANCE OF IN-PLANE RANDOM STACKED GRAPHENE COMPOSITES

  • 摘要: 面内随机堆叠石墨烯复合材料(graphene composites, GC)是可穿戴柔性传感器的基础材料之一, 但是其压阻传感机理与压阻性能仍然有待深入研究. 本文基于GC的微观结构特征, 利用0 $\sim$ 1间均匀分布随机数获得石墨烯在复合材料中的位置和方向, 建立了二维GC压阻传感器模型. 根据GC均匀变形的特点和有限单元法发展了GC压阻性能的计算方法, 计算得到了相对电阻、灵敏度系数、石墨烯片的微观形态与电流密度云图. 研究结果表明, GC中的压阻效应是由于在变形过程中石墨烯形态的改变, 包括GC中石墨烯片的密度随应变变化、石墨烯片滑移、分离导致电子迁移路径和无效片数量的改变, 而GC中石墨烯片密度随应变的变化是影响压阻效应的主要因素. 石墨烯片间的相对滑移产生线性传感特征, 分离反之. 高面分比GC与大尺寸石墨烯的GC拥有较大的感知范围, 低面分比GC和小尺寸石墨烯的GC具有更高的灵敏度系数. 最后将接触面的面内电阻率设为应变的函数, 研究了石墨烯片的接触效应对GC压阻性能影响, 解释了GC压阻性能的接触效应和影响机理. 研究结论可为GC生产方法的改进与创新、以及GC压阻传感器件的制备提供理论依据和技术参考.

     

  • [1] Mahmood H, Vanzetti L, Bersani M, et al. Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Composites Part A: Applied Science and Manufacturing, 2018,107:112-123
    [2] Li X, Koh KH, Farhan M, et al. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale, 2020,12(6):4110-4118
    [3] Sasikumar M, Balaji R, Vinothkumar M. Nanoparticles-coated glass fibre-based damage localisation and monitoring system for polymer composites. Structural Health Monitoring, 2018,18(4):1141-1153
    [4] Liu Y, Liu L, Li Z, et al. Green and facile fabrication of smart cellulose composites assembled by graphene nanoplates for dual sensing. Cellulose, 2019,26(17):9255-9268
    [5] Nuthalapati S, Shirhatti V, Kedambaimoole V, et al. Highly sensitive, scalable reduced graphene oxide with palladium nano-composite as strain sensor. Nanotechnology, 2020,31(3):35501
    [6] Xie L, Zi X, Meng Q, et al. Detection of physiological signals based on graphene using a simple and low-cost method. Sensors, 2019,19(7):1656
    [7] Wang S, Ning H, Hu N, et al. Environmentally-friendly and multifunctional graphene-silk fabric strain sensor for human-motion detection. Advanced Materials Interfaces, 2020,7(1):1901507
    [8] Lee H, Glasper MJ, Li X, et al. Preparation of fabric strain sensor based on graphene for human motion monitoring. Journal of Materials Science, 2018,53(12):9026-9033
    [9] Son W, Kim K, Lee S, et al. Ecoflex-passivated graphene-yarn composite for a highly conductive and stretchable strain sensor. Journal of Nanoscience and Nanotechnology, 2019,19(10):6690-6695
    [10] Jia Y, Yue X, Wang Y, et al. Multifunctional stretchable strain sensor based on polydopamine/ reduced graphene oxide/ electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring. Composites Part B: Engineering, 2020,183:107696
    [11] Wei Y, Qiao Y, Jiang G, et al. A wearable skinlike ultra-sensitive artificial graphene throat. Acs Nano, 2019,13(8):8639-8647
    [12] Das PS, Park SH, Baik KY, et al. Thermally reduced graphene oxide-nylon membrane based epidermal sensor using vacuum filtration for wearable electrophysiological signals and human motion monitoring. Carbon, 2020,158:386-393
    [13] Fu YF, Li YQ, Liu YF, et al. High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite. ACS Appl Mater Interfaces, 2018,10(41):35503-35509
    [14] 陈倩, 张汉哲, 吴钦 等. 复合材料水翼水动力与结构强度特性数值研究. 力学学报, 2019,51(5):1350-1362
    [14] ( Chen Qian, Zhang Hanzhe, Wu Qin, et al. The numerical investigation on hydrodynamic and structural strength of a composite hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1350-1362 (in Chinese))
    [15] 张洁皓, 段晨, 侯玉亮 等. 基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法. 力学学报, 2019,51(5):1411-1423
    [15] ( Zhang Jiehao, Duan Yuechen, Hou Yuliang, et al. Multi-scale method of plain woven composites subjected to low velocity impact based on asymptotic homogenization. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1411-1423 (in Chinese))
    [16] 李伟, 方国东, 李玮洁 等. 碳纤维增强复合材料微观烧蚀行为数值模拟. 力学学报, 2019,51(3):835-844
    [16] ( Li Wei, Fang Guodong, Li Weijie, et al. Numerical simulation of micro-ablation behavior for carbon fiber reinforced composites. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):835-844 (in Chinese))
    [17] Wang W, Yang T, Zhu H, et al. Bio-inspired mechanics of highly sensitive stretchable graphene strain sensors. Applied Physics Letters, 2015,106(17):171903
    [18] Hempel M, Nezich D, Kong J, et al. A novel class of strain gauges based on layered percolative films of 2d materials. Nano Letters, 2012,12(11):5714-5718
    [19] Tao L, Wang D, Tian H, et al. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale, 2017,9(24):8266-8273
    [20] Li X, Yang T, Yang Y, et al. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application. Advanced Functional Materials, 2016,26(8):1322-1329
    [21] Hod O, Meyer E, Zheng Q, et al. Structural superlubricity and ultralow friction across the length scales. Nature, 2018,563(7732):485-492
    [22] Wu S, Peng S, Yu Y, et al. Strategies for designing stretchable strain sensors and conductors. Advanced Materials Technologies, 2019,5(2):1900908
    [23] Liu Y, Zhang D, Wang K, et al. A novel strain sensor based on graphene composite films with layered structure. Composites Part A: Applied Science and Manufacturing, 2016,80:95-103
    [24] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010,5(8):574-578
    [25] Farmani A, Mir A. Graphene sensor based on surface plasmon resonance for optical scanning. Ieee Photonics Technology Letters, 2019,31(8):643-646
    [26] Wu S, Ladani RB, Zhang J, et al. Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/pdms nanocomposites. Acs Applied Materials & Interfaces, 2016,8(37):24853-24861
    [27] Li Z, Yang Q. Sensing mechanism of flexible and stretchable composites based on stacked graphene. Materials & Design, 2020,187:108384
    [28] Sethy D, Makireddi S, Varghese FV, et al. Piezoresistive behaviour of graphene nanoplatelet (GNP)/PMMA spray coated sensors on a polymer matrix composite beam. Express Polymer Letters, 2019,13(11):1018-1025
    [29] 任云鹏, 曹国鑫. 褶皱与晶界偶合作用对石墨烯断裂行为的影响. 力学学报, 2019,51(5):1381-1392
    [29] ( Ren Yunpeng, Cao Guoxin. Coupling effects of wrinkles and grain boundary on the fracture of graphene. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1381-1392 (in Chinese))
    [30] Tsang DZ, Dresselhaus MS. C-axis electrical-conductivity of kish graphite. Carbon, 1976,14(1):43-46
  • 加载中
计量
  • 文章访问数:  1206
  • HTML全文浏览量:  328
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-14
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回