EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于参激共振的受摄小行星悬停轨道设计方法

司震 钱霙婧 杨晓东 张伟

司震, 钱霙婧, 杨晓东, 张伟. 基于参激共振的受摄小行星悬停轨道设计方法[J]. 力学学报, 2020, 52(6): 1774-1788. doi: 10.6052/0459-1879-20-141
引用本文: 司震, 钱霙婧, 杨晓东, 张伟. 基于参激共振的受摄小行星悬停轨道设计方法[J]. 力学学报, 2020, 52(6): 1774-1788. doi: 10.6052/0459-1879-20-141
Si Zhen, Qian Yingjing, Yang Xiaodong, Zhang Wei. HOVERING ORBITS DESIGN FOR PERTURBED ASTEROIDS WITH PARAMETRIC EXCITATION RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1774-1788. doi: 10.6052/0459-1879-20-141
Citation: Si Zhen, Qian Yingjing, Yang Xiaodong, Zhang Wei. HOVERING ORBITS DESIGN FOR PERTURBED ASTEROIDS WITH PARAMETRIC EXCITATION RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1774-1788. doi: 10.6052/0459-1879-20-141

基于参激共振的受摄小行星悬停轨道设计方法

doi: 10.6052/0459-1879-20-141
基金项目: 1) 国家自然科学基金面上项目(11772009)
详细信息
    作者简介:

    2) 钱霙婧, 副教授, 主要研究方向: 探测器轨道动力学、非线性动力学. E-mail: candiceqyj@163.com

    通讯作者:

    钱霙婧

  • 中图分类号: V412.4+1,O313.1

HOVERING ORBITS DESIGN FOR PERTURBED ASTEROIDS WITH PARAMETRIC EXCITATION RESONANCE

  • 摘要: 本文将太阳引力摄动视为受摄不规则小行星系统的组成部分,借鉴非线性振动理论中参数激励共振的概念,创新性地设计了不规则小行星平衡点附近稳定的悬停观测轨道.为了同时考虑不规则小行星引力和太阳引力, 本文采用受摄粒杆模型描述系统.通过对未扰系统平衡点以及固有频率的分析, 给出系统存在参激共振轨道的条件.再以第二类参激主共振和1:3内共振为例,采用多尺度方法求得参数激励共振轨道的稳态解, 并对稳态解的稳定性进行判断.通过受摄小行星系统的幅频响应曲线以及力频响应曲线分析了系统的非线性特性以及参数激励效应.此外, 对内共振引起的长短周期能量转移现象进行了分析.本文的研究成果可以拓展现有小行星系统周期轨道族设计方法.

     

  • [1] 柳森, 党雷宁, 赵君尧 等. 小行星撞击地球的超高速问题. 力学学报, 2018,50(6):1311-1327
    [1] ( Liu Sen, Dang Leining, Zhao Junyao, et al. Hypervelocity issues of Earth impact by asteroids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1311-1327 (in Chinese))
    [2] Fujiwara A, Kawaguchi J, Yeomans DK, et al. The rubble-pile asteroid itokawa as observed by Hayabusa. Science, 2006,312(5778):1330-1334
    [3] Muller T, Durech J, Ishiguro M, et al. Hayabusa-2 Mission Target Asteroid 162173 Ryugu (1999 JU3): Searching for the object's spin-axis orientation. Astronomy & Astrophysics, 2017,599:A103
    [4] Lauretta DS, Balram-knutson SS, Beshore E, et al. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu. Space Science Reviews, 2017,212(1-2):925-984
    [5] 崔平远, 乔栋. 小天体附近轨道动力学与控制研究现状与展望. 力学进展, 2013,43(5):526-539
    [5] ( Cui Pingyuan, Qiao Dong. State-of-the-art and prospects for orbital dynamics and control near small celestial bodies. Advances in Mechanics, 2013,43(5):526-539 (in Chinese))
    [6] 曾祥远, 李俊峰, 刘向东. 细长小行星探测动力学与控制. 北京: 清华大学出版社, 2019
    [6] ( Zeng Xiangyuan, Li Junfeng, Liu Xiangdong. Dynamics and Control over Elongated Asteroids. Beijing: Tsinghua University Press, 2019 (in Chinese))
    [7] Nardi L, Palomba E, Longobardo A, et al. Mapping olivine abundance on asteroid (25143) Itokawa from Hayabusa_NIRS data. Icarus, 2019,14:321-349
    [8] Scheeres DJ. Close proximity dynamics and control about asteroids// Proceedings of the American Control Conference. Portland, OR: American Control Conference, 2014: 1584-1598.
    [9] Broschart SB, Scheeres DJ. Control of hovering spacecraft near small bodies: Application to Asteroid 25143 Itokawa. Journal of Guidance Control and Dynamics, 2005,28(2):343-354
    [10] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586
    [10] ( Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese))
    [11] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [11] ( Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [12] Scheeres DJ. Stability of hovering orbits around small bodies// 9th Annual Space Flight Mechanics Meeting. Breckenridge, CO: Advances in the Astronautical Sciences, 1999, 1-2:855-873
    [13] Sawai S, Scheeres DJ, Broschart SB. Control of hovering spacecraft using altimetry. Journal of Guidance Control and Dynamics, 2002,25(4):786-795
    [14] Sawai S, Scheeres DJ. Hovering and translational motions over small bodies. Advances in the Astronautical Sciences, 2001,108:781-796
    [15] Broschart SB, Scheeres DJ. Boundedness of spacecraft hovering under dead-band control in time-invariant systems. Journal of Guidance Control and Dynamics, 2007,30(2):601-610
    [16] Zhang P, Ma TH, Zhao B, et al. Robust linear quadratic regulator via sliding mode guidance for spacecraft orbiting a tumbling asteroid. Mathematical Problems in Engineering, 2015,2015(Pt.21):947843
    [17] Zeng XY, Gong SP, Li JF, et al. Solar sail body-fixed hovering over elongated asteroids. Journal of Guidance, Control, and Dynamics, 2016,39(6):1223-1231
    [18] Daniel C, Alexis P, Anne L. Long-term evolution of space debris under the J2 effect, the solar radiation pressure and the solar and lunar perturbations. Celestial Mechanics and Dynamical Astronomy volume, 2015,123(2):223-238
    [19] Zhao CY, Zhang MJ, Wang HB, et al. Two-dimensional phase plane structure and the stability of the orbital motion for space debris in the geosynchronous ring. Advances in Space Research, 2013,52(4):677-684
    [20] Hamilton DP, Burns JA. Orbital stability zones about asteroids: II. The destabilizing effects of eccentric orbits and of solar radiation. Icarus, 1992,96(1):43-64
    [21] Heiligers J, Scheeres DJ. Solar-sail orbital motion about asteroids and binary asteroid systems. Journal of Guidance, Control, and Dynamics, 2018,41(9):1947-1962
    [22] Morrow E, Scheeres DJ, Lubin D. Solar sail orbit operations at asteroids. Journal of Spacecraft and Rockets, 2001,38(2):279-286
    [23] Williams T, Abate M. Capabilities of furlable solar sails for asteroid proximity operations. Journal of Spacecraft and Rockets, 2009,46(5):967-975
    [24] Giancotti M, Funase R. Solar sail equilibrium positions and transfer trajectories close to a trojan asteroid// The 63rd International Astronautical Congress, 2012
    [25] Feng JL, Hou XY. Secular dynamics around small bodies with solar radiation pressure. Communications in Nonlinear Science and Numerical Simulation, 2019,76, 71-91
    [26] Xin XS, Scheeres DJ, Hou XY. Forced periodic motions by solar radiation pressure around uniformly rotating asteroids. Celestial Mechanics and Dynamical Astronomy, 2016,126(4):405-432
    [27] 辛晓生. 小行星探测器轨道动力学. [博士论文]. 南京: 南京大学, 2017: 89-108
    [27] ( Xin Xiaosheng. Orbital dynamics about asteroids. [PhD Thesis]. Nanjing: Nanjing University, 2017: 89-108 (in Chinese))
    [28] 刘莹莹, 刘睿, 周军. 摄动力对绕飞小行星航天器轨道的影响. 飞行力学, 2008,26(3):44-48
    [28] ( Liu Yingying, Liu Rui, Zhou Jun. Research on orbit of spacecraft circling planetoid influenced by dragging force. Flight Dynamics, 2008,26(3):44-48 (in Chinese))
    [29] 倪彦硕, 宝音贺西, 李俊峰. 考虑太阳摄动的小行星附近轨道动力学. 深空探测学报, 2014,1(1):67-74
    [29] ( Ni Yanshuo, Baoyin Hexi, Li Junfeng. Orbit dynamics in the vicinity of asteroids with solar perturbation. Journal of Deep Space Exploration, 2014,1(1):67-74 (in Chinese))
    [30] Qian YJ, Yang LY, Yang XD, et al. Parametric stability analysis for planar bicircular restricted four-body problem. Astrodynamics, 2018,2:147-159
    [31] Qian YJ, Yang XD, Wu H, et al. Gyroscopic modes decoupling method in parametric instability analysis of gyroscopic systems. Acta Mechanica Sinica, 2018,222(2):963-969
    [32] 司震, 钱霙婧, 杨晓东 等. 基于扰动粒杆模型的强不规则小行星的参激稳定分析// 北京力学会第二十五届学术年会会议论文集. 2019: 827-828
    [32] ( Si Zhen, Qian Yingjing, Yang Xiaodong, et al. Parametric stability analysis for irregular-shaped asteroids based on perturbed particle-linkage model// Proceedings of the 25th Annual Conference of Beijing Society of Theoretical and Applied mechanics. 2019: 827-828 (in Chinese))
    [33] Lei Hanlun, Circi C, Ortore E. Secular dynamics around uniformly rotating asteroids. Monthly Notices of the Royal Astronomical Society, 2019,485(2):2731-2743
    [34] Nayfeh AH, Mook DT. Nonlinear Oscillations. New York: Clarendon, 1979: 384-390
    [35] 李晓玉, 岳宝增. 基于多尺度方法的平动圆柱贮箱航天器刚-液耦合动力学研究. 力学学报, 2019,51(5):1448-1454
    [35] ( Li Xiaoyu, Yue Baozeng. Study on the rigid-liquid coupling dynamics of a cylindrical-tank spacecraft in translation based on muti-scale method, Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1448-1454 (in Chinese))
    [36] Yang HW, Li S, Xu C. A particle-linkage model for non-axisymmetric elongated asteroids. Research in Astronomy and Astrophysics, 2018,18(7):84
    [37] Zeng XY, Jiang FH, Li JF, et al. Study on the connection between the rotating mass dipole and natural elongated bodies. Astrophysics and Space Science, 2015,356(1):29-42
    [38] Lan L, Yang HW, Baoyin HX, et al. Retrograde near-circular periodic orbits near equatorial planes of small irregular bodies. Astrophysics & Space Science, 2017,362(9):169-182
    [39] Zeng XY, Zhang YL, Yu Y, et al. The dipole segment model for axisymmetrical elongated asteroids. Astronomical Journal, 2018,155(2):85-102
    [40] Lei HL, Xu B. Analytical study on the motions around equilibrium points of restricted four-body problem. Communications in Nonlinear Science and Numerical Simulation, 2015,29(1-3):441-458
  • 加载中
计量
  • 文章访问数:  2295
  • HTML全文浏览量:  718
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回