EI、Scopus 收录
中文核心期刊

含间隙铰接的柔性航天器刚柔耦合动力学与控制研究

孙杰, 孙俊, 刘付成, 朱东方, 黄静

孙杰, 孙俊, 刘付成, 朱东方, 黄静. 含间隙铰接的柔性航天器刚柔耦合动力学与控制研究[J]. 力学学报, 2020, 52(6): 1569-1580. DOI: 10.6052/0459-1879-20-109
引用本文: 孙杰, 孙俊, 刘付成, 朱东方, 黄静. 含间隙铰接的柔性航天器刚柔耦合动力学与控制研究[J]. 力学学报, 2020, 52(6): 1569-1580. DOI: 10.6052/0459-1879-20-109
Sun Jie, Sun Jun, Liu Fucheng, Zhu Dongfang, Huang Jing. DYNAMICS AND CONTROL OF RIGID-FLEXIBLE COUPLING FLEXIBLE SPACECRAFT WITH JOINT CLEARANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1569-1580. DOI: 10.6052/0459-1879-20-109
Citation: Sun Jie, Sun Jun, Liu Fucheng, Zhu Dongfang, Huang Jing. DYNAMICS AND CONTROL OF RIGID-FLEXIBLE COUPLING FLEXIBLE SPACECRAFT WITH JOINT CLEARANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1569-1580. DOI: 10.6052/0459-1879-20-109
孙杰, 孙俊, 刘付成, 朱东方, 黄静. 含间隙铰接的柔性航天器刚柔耦合动力学与控制研究[J]. 力学学报, 2020, 52(6): 1569-1580. CSTR: 32045.14.0459-1879-20-109
引用本文: 孙杰, 孙俊, 刘付成, 朱东方, 黄静. 含间隙铰接的柔性航天器刚柔耦合动力学与控制研究[J]. 力学学报, 2020, 52(6): 1569-1580. CSTR: 32045.14.0459-1879-20-109
Sun Jie, Sun Jun, Liu Fucheng, Zhu Dongfang, Huang Jing. DYNAMICS AND CONTROL OF RIGID-FLEXIBLE COUPLING FLEXIBLE SPACECRAFT WITH JOINT CLEARANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1569-1580. CSTR: 32045.14.0459-1879-20-109
Citation: Sun Jie, Sun Jun, Liu Fucheng, Zhu Dongfang, Huang Jing. DYNAMICS AND CONTROL OF RIGID-FLEXIBLE COUPLING FLEXIBLE SPACECRAFT WITH JOINT CLEARANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1569-1580. CSTR: 32045.14.0459-1879-20-109

含间隙铰接的柔性航天器刚柔耦合动力学与控制研究

基金项目: 1) 国家自然科学基金资助项目(11772185);国家自然科学基金资助项目(61903245);国家自然科学基金资助项目(61803258)
详细信息
    作者简介:

    2) 孙俊,研究员,主要研究方向:航天器动力学与控制. E-mail: sjlovedh@hotmail.com

    通讯作者:

    孙俊

  • 中图分类号: V414.3,V448.2

DYNAMICS AND CONTROL OF RIGID-FLEXIBLE COUPLING FLEXIBLE SPACECRAFT WITH JOINT CLEARANCE

  • 摘要: 大型柔性航天器展开锁定后,运动副中仍存在大量无法消除的间隙. 铰链间隙直接影响柔性航天器的姿态 运动和有效载荷的指向精度及稳定度,会对航天器的动力学特性造成较大的影响. 针对这一问题, 提出一种含间隙铰 接的航天器刚柔耦合动力学建模与控制方法. 首先建立含间隙的铰链精确动力学模型,从而构建含间隙铰接的柔性结构 动力学模型. 然后利用哈密顿原理和模态离散方法,建立含间隙铰接柔性航天器离散形式的刚柔耦合非线性动力学 模型,采用 Newmark 算法对非线性动力学方程进行求解. 基于压电纤维复合材料 (macro fiber composite, MFC) 驱动器 构建航天器的刚-柔-电耦合动力学方程,采用最优控制设计控制律. 分析了铰链参数、中心刚体转动惯量、间隙尺寸和间隙数目对航天器动力学特性的影响,着重研究了铰链间隙对航天器姿态运动和结构振动的影响作用. 最后采用 MFC 驱动器对航天器施加主动控制. 结果表明,铰链参数和中心刚体转动惯量影响航天器的固有频率;随着铰链间隙尺寸的增大及间隙数目的增多,航天器的整体刚度逐渐减小,而航天器的姿态角和振动位移响应不断增大;通过基于 MFC 的主动控制,能够实现含间隙铰接航天器姿态运动与结构振动的协同控制,并缓解间隙对系统动态特性造成的影响.
    Abstract: There are still lots of joint clearances that cannot be eliminated for large-scale flexible spacecraft in post-lock phase. Joint clearance directly affects the attitude maneuver of the flexible spacecraft as well as the pointing accuracy and stability of the payload, which has a great influence on the dynamic characteristics of the spacecraft. Aiming at this issue, a dynamic modelling and control method for the rigid-flexible coupling spacecraft with joint clearance is proposed in this paper. The accurate dynamic model of the joint with clearance is established firstly, thus the dynamic model of flexible structure with joint clearances is built. Then the discrete rigid-flexible coupling nonlinear dynamic model of the spacecraft with clearances is obtained by Hamilton principle and modal discrete method. The Newmark algorithm is used to solve the nonlinear equation. Based on macro fiber composite (MFC) actuator, the rigid-flexible-electrical coupling dynamic equation of the spacecraft is obtained and the control law is designed by the optimum control. The influences of joint parameters, moment of inertia of central rigid body, clearance size and clearance number on the dynamic characteristics of the spacecraft are analyzed. The effects of joint clearance on the attitude maneuver and structural vibration of the spacecraft are emphatically studied. Finally, the active control is applied to the spacecraft using MFC actuator. The results reveal that the joint parameters and moment of inertia of the central rigid body affect the natural frequency of the spacecraft. With the increase of the size of joint clearance and number of clearances, the overall stiffness of the spacecraft decreases gradually, while the attitude angle and vibration displacement response of the spacecraft increase. Through the active control based on MFC, the cooperative control of the attitude maneuver and structural vibration of the spacecraft with clearance can be realized, and the effects of clearance on the dynamic characteristics of the spacecraft can be alleviated.
  • [1] 胡海岩, 田强, 张伟 等. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 2013,43(4):390-414
    [1] ( Hu Haiyan, Tian Qiang, Zhang Wei, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 2013,43(4):390-414 (in Chinese))
    [2] Moon FC, Li GX. Experimental study of chaotic vibrations in a pin-jointed space truss structure. AIAA Journal, 1990,28:915-921
    [3] Bendiksen OO. Mode localization phenomena in large space structures. AIAA Journal, 1987,25:1241-1248
    [4] 曹登庆, 初世明, 李郑发 等. 空间可展机构非光滑力学模型和动力学研究. 力学学报, 2013,45(1):3-15
    [4] ( Cao Dengqing, Chu Shiming, Li Zhengfa, et al. Study on the non-smooth mechanical models and dynamics for space deployable mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(1):3-15 (in Chinese))
    [5] 高晨彤, 黎亮, 章定国 等. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真. 力学学报, 2018,50(3):654-666
    [5] ( Gao Chentong, Li Liang, Zhang Dingguo, et al. Dynamic modeling and simulation of rotating FGM tapered beams with shear effect. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):654-666 (in Chinese))
    [6] 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147
    [6] ( Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese))
    [7] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [7] ( Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [8] 阎绍泽, 向吴维凯, 黄铁球. 计及间隙的运动副和机械系统动力学的研究进展. 北京大学学报(自然科学版), 2016,52(4):741-755
    [8] ( Yan Shaoze, Xiang Wuweikai, Huang Tieqiu. Advances in modeling of clearance joints and dynamics of mechanical systems with clearances. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(4):741-755 (in Chinese))
    [9] Marques F, Isaac F, Dourado N, et al. An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mechanism and Machine Theory, 2017,116:123-144
    [10] Cavalieri FJ, Cardona A. Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mechanism and Machine Theory, 2018,121:335-354
    [11] Tian Q, Flores P, Lankarani HM. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mechanism and Machine Theory, 2018,122:1-57
    [12] Zheng XD, Zhang F, Wang Q. Modeling and simulation of planar multibody systems with revolute clearance joints considering stiction based on an LCP method. Mechanism and Machine Theory, 2018,130:184-202
    [13] Akhadkar N, Acary V, Brogliato B. Multibody systems with 3D revolute joints with clearances: An industrial case study with an experimental validation. Multibody System Dynamics, 2018,42:249-282
    [14] Guo JN, He P, Liu ZS, et al. Investigation of an improved planar revolute clearance joint contact model with rough surface. Tribology International, 2019,134:385-393
    [15] Zhao QQ, Guo JK, Hong J, et al. Analysis of angular errors of the planar multi-closed-loop deployable mechanism with link deviations and revolute joint clearances. Aerospace Science and Technology, 2019,87, 25-36
    [16] Wang XP, Liu G, Ma SJ, et al. Study on dynamic responses of planar multibody systems with dry revolute clearance joint: numerical and experimental approaches. Journal of Sound and Vibration, 2019,438:116-138
    [17] Xiang WWK, Yan SZ. Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: Modeling, analysis and quantification. Acta Astronautica, 2020,169:158-169
    [18] Xiang WWK, Yan SZ, Wu JN, et al. Dynamic response and sensitivity analysis for mechanical systems with clearance joints and parameter uncertainties using Chebyshev polynomials method. Mechanical Systems and Signal Processing, 2020,138:106596
    [19] Qian MB, Qin Z, Yan SZ, et al. A comprehensive method for the contact detection of a translational clearance joint and dynamic response after its application in a crank-slider mechanism. Mechanism and Machine Theory, 2020,145:103717
    [20] 王巍, 于登云, 马兴瑞. 航天器铰接结构非线性动力学特性研究进展. 力学进展, 2006,36(2):233-238
    [20] ( Wang Wei, Yu Dengyun, Ma Xingrui. Advances and trends of non-linear dynamics of space joint-dominated structure. Advances in Mechanics, 2006,36(2):233-238 (in Chinese))
    [21] Yoshida T. Dynamic characteristic formulations for jointed space structures. Journal of Spacecraft and Rockets, 2006,43(4):771-779
    [22] Li TJ, Guo J, Cao YY. Dynamic characteristics analysis of deployable space structures considering joint clearance. Acta Astronautica, 2011,68:974-983
    [23] 张静, 郭宏伟, 刘荣强 等. 铰链对含铰结构非线性动力学特性影响分析. 航空学报, 2014,35(5):1433-1445
    [23] ( Zhang Jing, Guo Hongwei, Liu Rongqiang, et al. Influence analysis of joints on nonlinear dynamic characteristics of articulated structures. Acta Aeronautica et Astronautica Sinica, 2014,35(5):1433-1445 (in Chinese))
    [24] Yao XG, Guo XS, Feng YB, et al. Dynamic analysis for planar beam with clearance joint. Journal of Sound and Vibration, 2015,339:324-341
    [25] Wang Y, Li FM. Nonlinear dynamics modeling and analysis of two rods connected by a joint with clearance. Applied Mathematical Modelling, 2015,39(9):2518-2527
    [26] Zhang J, Guo HW, Liu RQ, et al. Nonlinear dynamic characteristic analysis of jointed beam with clearance. Acta Astronautica, 2016,129:135-146
    [27] Li B, Han LF, Wei J, et al. Theoretical and experimental identification of cantilever beam with clearances using statistical and subspace-based methods. Journal of Computational and Nonlinear Dynamics, 2016,11:031003
    [28] Liu J, Li B. Theoretical and experimental identification of clearance nonlinearities for a continuum structure. Journal of Computational and Nonlinear Dynamics, 2016,11:041019
    [29] 袭安, 张伟, 刘宏利. 大型环形桁架天线间隙铰径向动刚度的理论与实验研究. 中国科学: 物理学力学天文学, 2017,47(10):104606
    [29] ( Xi An, Zhang Wei, Liu Hongli. Analysis and experiment on dynamic stiffness of clearance hinge in large circular truss antenna. Scientia Sinica Physica, Mechanica & Astronomica, 2017,47(10):104606 (in Chinese))
    [30] Krysko VA, Awrejcewicz J, Papkova IV, et al. On reliability of chaotic dynamics of two Euler-Bernoulli beams with a small clearance. International Journal of Non-linear Mechanics, 2018,104:8-18
    [31] Jiang GQ, Yang XD, Zhang W, et al. The modeling and dynamic analysis of two jointed beams with clearance. Applied Mathematical Modelling, 2019,74, 528-539
    [32] 何昊南, 于开平, 唐宏 等. 有间隙折叠舵面的振动实验与非线性建模研究. 力学学报, 2019,51(5):1476-1488
    [32] ( He Haonan, Yu Kaiping, Tang Hong, et al. Vibration experiment and nonlinear modelling research on the folding fin with freeplay. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1476-1488 (in Chinese))
    [33] Hu BB, Liu J, Liu SH, et al. Simultaneous multi-parameter identification algorithm for clearance-type nonlinearity. Mechanical Systems and Signal Processing, 2020,139:106423
    [34] 白争锋, 赵阳, 田浩. 含铰间间隙太阳帆板展开动力学仿真. 哈尔滨工业大学学报, 2009,43(3):11-14
    [34] ( Bai Zhengfeng, Zhao Yang, Tian Hao. Dynamics simulation of deployment for solar panels with hinge clearance. Journal of Harbin Institute of Technology, 2009,41(3):11-14 (in Chinese))
    [35] Bai ZF, Liu YQ, Sun Yi. Investigation on dynamic responses of dual-axis positioning mechanism for satellite antenna considering joint clearance. Journal of Mechanical Science and Technology, 2015,29(2):453-460
    [36] Li YY, Wang ZL, Wang C, et al. Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance. Acta Astronautica, 2018,142:138-151
    [37] 李敏, 陈伟民, 王明春 等. 压电驱动的载荷比拟方法. 中国科学E辑: 技术科学, 2009,39(11):1810-1817
    [37] ( Li Min, Chen Weimin, Wang Mingchun, et al. A load simulation method of piezoelectric actuator in FEM for smart structures. Science in China Series E: Technological Science, 2009,52(9):2576-2584 (in Chinese))
  • 期刊类型引用(8)

    1. 刘付成,朱东方,李爽,李鸿光,郭延宁,齐乃明,王北超,冯昆鹏,孙俊. 超大尺度柔性航天器动力学建模与高精度形-姿协同控制研究进展. 中国科学:物理学 力学 天文学. 2025(02): 6-22 . 百度学术
    2. 张博,谢华珂,丁虎,陈立群. 压电纤维复合材料对悬臂结构的作动行为研究. 力学学报. 2024(05): 1439-1447 . 本站查看
    3. 姜帅,孟锴,王继超,张帅帅. 考虑间隙的刚柔耦合实验平台混沌辨识研究. 实验技术与管理. 2024(10): 116-124 . 百度学术
    4. 潘佳煊,钱孟波,孙福兴,虞浪,陈强. 基于熵权法的含间隙和柔性的机构定量分析方法及应用. 振动与冲击. 2023(19): 40-48 . 百度学术
    5. 姜帅,刘成哲,赵茂然,杨扬. 含间隙实验教学平台动力学建模、仿真与试验. 实验室研究与探索. 2023(08): 166-171 . 百度学术
    6. 赵海洋,王金东,何富君,于德龙,文浩东. 含间隙运动副往复机构动力学虚拟仿真教学实验设计. 实验技术与管理. 2022(08): 162-166 . 百度学术
    7. 张博,丁虎,陈立群. 基于压电纤维复合材料的旋转叶片主动控制. 力学学报. 2021(04): 1093-1102 . 本站查看
    8. 刘付成,朱东方. 考虑连接非线性的大型桁架天线分散协调控制. 航空学报. 2021(11): 139-149 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  1526
  • HTML全文浏览量:  288
  • PDF下载量:  373
  • 被引次数: 24
出版历程
  • 收稿日期:  2020-04-13
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回