[1] | 胡海岩, 田强, 张伟 等. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 2013,43(4):390-414 | [1] | ( Hu Haiyan, Tian Qiang, Zhang Wei, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 2013,43(4):390-414 (in Chinese)) | [2] | Moon FC, Li GX. Experimental study of chaotic vibrations in a pin-jointed space truss structure. AIAA Journal, 1990,28:915-921 | [3] | Bendiksen OO. Mode localization phenomena in large space structures. AIAA Journal, 1987,25:1241-1248 | [4] | 曹登庆, 初世明, 李郑发 等. 空间可展机构非光滑力学模型和动力学研究. 力学学报, 2013,45(1):3-15 | [4] | ( Cao Dengqing, Chu Shiming, Li Zhengfa, et al. Study on the non-smooth mechanical models and dynamics for space deployable mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(1):3-15 (in Chinese)) | [5] | 高晨彤, 黎亮, 章定国 等. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真. 力学学报, 2018,50(3):654-666 | [5] | ( Gao Chentong, Li Liang, Zhang Dingguo, et al. Dynamic modeling and simulation of rotating FGM tapered beams with shear effect. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):654-666 (in Chinese)) | [6] | 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147 | [6] | ( Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese)) | [7] | 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13 | [7] | ( Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese)) | [8] | 阎绍泽, 向吴维凯, 黄铁球. 计及间隙的运动副和机械系统动力学的研究进展. 北京大学学报(自然科学版), 2016,52(4):741-755 | [8] | ( Yan Shaoze, Xiang Wuweikai, Huang Tieqiu. Advances in modeling of clearance joints and dynamics of mechanical systems with clearances. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(4):741-755 (in Chinese)) | [9] | Marques F, Isaac F, Dourado N, et al. An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mechanism and Machine Theory, 2017,116:123-144 | [10] | Cavalieri FJ, Cardona A. Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mechanism and Machine Theory, 2018,121:335-354 | [11] | Tian Q, Flores P, Lankarani HM. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mechanism and Machine Theory, 2018,122:1-57 | [12] | Zheng XD, Zhang F, Wang Q. Modeling and simulation of planar multibody systems with revolute clearance joints considering stiction based on an LCP method. Mechanism and Machine Theory, 2018,130:184-202 | [13] | Akhadkar N, Acary V, Brogliato B. Multibody systems with 3D revolute joints with clearances: An industrial case study with an experimental validation. Multibody System Dynamics, 2018,42:249-282 | [14] | Guo JN, He P, Liu ZS, et al. Investigation of an improved planar revolute clearance joint contact model with rough surface. Tribology International, 2019,134:385-393 | [15] | Zhao QQ, Guo JK, Hong J, et al. Analysis of angular errors of the planar multi-closed-loop deployable mechanism with link deviations and revolute joint clearances. Aerospace Science and Technology, 2019,87, 25-36 | [16] | Wang XP, Liu G, Ma SJ, et al. Study on dynamic responses of planar multibody systems with dry revolute clearance joint: numerical and experimental approaches. Journal of Sound and Vibration, 2019,438:116-138 | [17] | Xiang WWK, Yan SZ. Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: Modeling, analysis and quantification. Acta Astronautica, 2020,169:158-169 | [18] | Xiang WWK, Yan SZ, Wu JN, et al. Dynamic response and sensitivity analysis for mechanical systems with clearance joints and parameter uncertainties using Chebyshev polynomials method. Mechanical Systems and Signal Processing, 2020,138:106596 | [19] | Qian MB, Qin Z, Yan SZ, et al. A comprehensive method for the contact detection of a translational clearance joint and dynamic response after its application in a crank-slider mechanism. Mechanism and Machine Theory, 2020,145:103717 | [20] | 王巍, 于登云, 马兴瑞. 航天器铰接结构非线性动力学特性研究进展. 力学进展, 2006,36(2):233-238 | [20] | ( Wang Wei, Yu Dengyun, Ma Xingrui. Advances and trends of non-linear dynamics of space joint-dominated structure. Advances in Mechanics, 2006,36(2):233-238 (in Chinese)) | [21] | Yoshida T. Dynamic characteristic formulations for jointed space structures. Journal of Spacecraft and Rockets, 2006,43(4):771-779 | [22] | Li TJ, Guo J, Cao YY. Dynamic characteristics analysis of deployable space structures considering joint clearance. Acta Astronautica, 2011,68:974-983 | [23] | 张静, 郭宏伟, 刘荣强 等. 铰链对含铰结构非线性动力学特性影响分析. 航空学报, 2014,35(5):1433-1445 | [23] | ( Zhang Jing, Guo Hongwei, Liu Rongqiang, et al. Influence analysis of joints on nonlinear dynamic characteristics of articulated structures. Acta Aeronautica et Astronautica Sinica, 2014,35(5):1433-1445 (in Chinese)) | [24] | Yao XG, Guo XS, Feng YB, et al. Dynamic analysis for planar beam with clearance joint. Journal of Sound and Vibration, 2015,339:324-341 | [25] | Wang Y, Li FM. Nonlinear dynamics modeling and analysis of two rods connected by a joint with clearance. Applied Mathematical Modelling, 2015,39(9):2518-2527 | [26] | Zhang J, Guo HW, Liu RQ, et al. Nonlinear dynamic characteristic analysis of jointed beam with clearance. Acta Astronautica, 2016,129:135-146 | [27] | Li B, Han LF, Wei J, et al. Theoretical and experimental identification of cantilever beam with clearances using statistical and subspace-based methods. Journal of Computational and Nonlinear Dynamics, 2016,11:031003 | [28] | Liu J, Li B. Theoretical and experimental identification of clearance nonlinearities for a continuum structure. Journal of Computational and Nonlinear Dynamics, 2016,11:041019 | [29] | 袭安, 张伟, 刘宏利. 大型环形桁架天线间隙铰径向动刚度的理论与实验研究. 中国科学: 物理学力学天文学, 2017,47(10):104606 | [29] | ( Xi An, Zhang Wei, Liu Hongli. Analysis and experiment on dynamic stiffness of clearance hinge in large circular truss antenna. Scientia Sinica Physica, Mechanica & Astronomica, 2017,47(10):104606 (in Chinese)) | [30] | Krysko VA, Awrejcewicz J, Papkova IV, et al. On reliability of chaotic dynamics of two Euler-Bernoulli beams with a small clearance. International Journal of Non-linear Mechanics, 2018,104:8-18 | [31] | Jiang GQ, Yang XD, Zhang W, et al. The modeling and dynamic analysis of two jointed beams with clearance. Applied Mathematical Modelling, 2019,74, 528-539 | [32] | 何昊南, 于开平, 唐宏 等. 有间隙折叠舵面的振动实验与非线性建模研究. 力学学报, 2019,51(5):1476-1488 | [32] | ( He Haonan, Yu Kaiping, Tang Hong, et al. Vibration experiment and nonlinear modelling research on the folding fin with freeplay. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1476-1488 (in Chinese)) | [33] | Hu BB, Liu J, Liu SH, et al. Simultaneous multi-parameter identification algorithm for clearance-type nonlinearity. Mechanical Systems and Signal Processing, 2020,139:106423 | [34] | 白争锋, 赵阳, 田浩. 含铰间间隙太阳帆板展开动力学仿真. 哈尔滨工业大学学报, 2009,43(3):11-14 | [34] | ( Bai Zhengfeng, Zhao Yang, Tian Hao. Dynamics simulation of deployment for solar panels with hinge clearance. Journal of Harbin Institute of Technology, 2009,41(3):11-14 (in Chinese)) | [35] | Bai ZF, Liu YQ, Sun Yi. Investigation on dynamic responses of dual-axis positioning mechanism for satellite antenna considering joint clearance. Journal of Mechanical Science and Technology, 2015,29(2):453-460 | [36] | Li YY, Wang ZL, Wang C, et al. Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance. Acta Astronautica, 2018,142:138-151 | [37] | 李敏, 陈伟民, 王明春 等. 压电驱动的载荷比拟方法. 中国科学E辑: 技术科学, 2009,39(11):1810-1817 | [37] | ( Li Min, Chen Weimin, Wang Mingchun, et al. A load simulation method of piezoelectric actuator in FEM for smart structures. Science in China Series E: Technological Science, 2009,52(9):2576-2584 (in Chinese)) |
|