EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中间层厚度对三明治结构中 I 型断裂能量释放率的影响研究

张凡凡 宋晶如 马寒松 刘小明 魏悦广

张凡凡, 宋晶如, 马寒松, 刘小明, 魏悦广. 中间层厚度对三明治结构中 I 型断裂能量释放率的影响研究[J]. 力学学报, 2020, 52(4): 1080-1094. doi: 10.6052/0459-1879-20-092
引用本文: 张凡凡, 宋晶如, 马寒松, 刘小明, 魏悦广. 中间层厚度对三明治结构中 I 型断裂能量释放率的影响研究[J]. 力学学报, 2020, 52(4): 1080-1094. doi: 10.6052/0459-1879-20-092
Zhang Fanfan, Song Jingru, Ma Hansong, Liu Xiaoming, Wei Yueguang. EFFECT OF INTERLAYER THICKNESS ON THE MODE I FRACTURE ENERGY RELEASE RATE OF SANDWICH STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1080-1094. doi: 10.6052/0459-1879-20-092
Citation: Zhang Fanfan, Song Jingru, Ma Hansong, Liu Xiaoming, Wei Yueguang. EFFECT OF INTERLAYER THICKNESS ON THE MODE I FRACTURE ENERGY RELEASE RATE OF SANDWICH STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1080-1094. doi: 10.6052/0459-1879-20-092

中间层厚度对三明治结构中 I 型断裂能量释放率的影响研究

doi: 10.6052/0459-1879-20-092
基金项目: 1)国家基础科学中心(11988102);国家自然科学基金(11772334);国家自然科学基金(11972347);国家自然科学基金(11432014);中国科学院先导B基金(XDB22040501)
详细信息
    通讯作者:

    刘小明

  • 中图分类号: O346.1

EFFECT OF INTERLAYER THICKNESS ON THE MODE I FRACTURE ENERGY RELEASE RATE OF SANDWICH STRUCTURE

  • 摘要: 三明治结构作为载荷传递和连接元件,广泛应用于航空航天、材料表征、柔性电子等领域. 了解其断裂行为和特点能为三明治结构连接件极限载荷的设计提供理论指导. 基于改良弹性地基理论模型,本文提出了一种计算能量释放率的新理论模型,模型中考虑中间层厚度对三明治结构 I 型断裂能量释放率的影响. 结果表明,中间层厚度对三明治结构 I 型断裂的影响存在两个部分:中间层剪切力的影响及中间层引起结构刚度增大的影响. 当无量纲中间层厚度取最大值 2 时,传统模型与有限元计算结果存在 70% 以上的误差;采用本文的模型可以极大地提高精度,将误差降到 5% 以内. 相比改良弹性地基理论只适用于中间层厚度较小的情况,本理论模型的适用范围更广. 此外,利用本模型,本文选取了两个几何参数 (中间层厚度和裂纹初始长度) 和一个材料参数 (模量比) 进行研究. 讨论了剪切效应对结构几何和材料参数的敏感性. 在定载荷的基础上,讨论了几何和材料参数对能量释放率的影响;并在假定结构断裂韧性不变的基础上,得到了几何和材料参数对三明治结构临界载荷的影响规律.

     

  • [1] Marzi S, Biel A, Stigh U. On experimental methods to investigate the effect of layer thickness on the fracture behavior of adhesively bonded joints. International Journal of Adhesion and Adhesives, 2011,31(8):840-850
    [2] Carlberger T, Stigh U. Influence of layer thickness on cohesive properties of an epoxy-based adhesive—an experimental study. The Journal of Adhesion, 2010,86(8):816-835
    [3] Lee DB, Ikeda T, Miyazaki N, et al. Effect of bond thickness on the fracture toughness of adhesive joints. Journal of Engineering Materials and Technology, 2004,126(1):14-18
    [4] Ranade SR, Guan Y, Ohanehi DC, et al. A tapered bondline thickness double cantilever beam (DCB) specimen geometry for combinatorial fracture studies of adhesive bonds. International Journal of Adhesion and Adhesives, 2014,55:155-160
    [5] Cooper V, Ivankovic A, Karac A, et al. Effects of bond gap thickness on the fracture of nano-toughened epoxy adhesive joints. Polymer, 2012,53(24):5540-5553
    [6] Fernandes RL, Freitas ST, Budzik MK, et al. From thin to extra-thick adhesive layer thicknesses: Fracture of bonded joints under mode I loading conditions. Engineering Fracture Mechanics, 2019,218:601-607
    [7] Akpinar S, Doru MO, ?zel A, et al. The effect of the spew fillet on an adhesively bonded single-lap joint subjected to bending moment. Composites Part B Engineering, 2013,55:55-64
    [8] Da Silva LF, Lopes MJC. Joint strength optimization by the mixed-adhesive technique. International Journal of Adhesion and Adhesives, 2009,29(5):509-514
    [9] Cheng J, Taheri F. A smart single-lap adhesive joint integrated with partially distributed piezoelectric patches. International Journal of Solids and Structures, 2006,43(5):1079-1092
    [10] Mao J, Nassar S, Yang X. An improved model for adhesively bonded DCB joints. Journal of Adhesion Science and Technology, 2014,28(6):613-629
    [11] Biel A, Stigh U. Effects of constitutive parameters on the accuracy of measured fracture energy using the DCB-specimen. Engineering Fracture Mechanics, 2008,75(10):2968-2983
    [12] Yoshihara H. Simple estimation of critical stress intensity factors of wood by tests with double cantilever beam and three-point end-notched flexure. Holzforschung, 2007,61(2):182-189
    [13] Tamuzs V, Tarasovs S, Vilks U. Delamination properties of translaminar-reinforced composites. Composites Science and Technology, 2003,63(10):1423-1431
    [14] Biel A, Stigh U. An analysis of the evaluation of the fracture energy using the DCB-specimen. Archives of Mechanics, 2007,59(4-5):311-327
    [15] Williams J. The fracture mechanics of delamination tests. The Journal of Strain Analysis for Engineering Design, 1989,24(4):207-214
    [16] De Moura MR, Goncalves J. Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading. Composites Science and Technology, 2008,68(10-11):2224-2230
    [17] Xie W, Sitaraman SK. Investigation of interfacial delamination of a copper-epoxy interface under monotonic and cyclic loading: Experimental characterization. IEEE Transactions on Advanced Packaging, 2003,26(4):447-452
    [18] Ouezdou MB, Chudnovsky A, Moet A. Re-evaluation of adhesive fracture energy. The Journal of Adhesion, 1988,25(3):169-183
    [19] Kanninen M. An augmented double cantilever beam model for studying crack propagation and arrest. International Journal of Fracture, 1973,9(1):83-92
    [20] Penado F. A closed form solution for the energy release rate of the double cantilever beam specimen with an adhesive layer. Journal of Composite Materials, 1993,27(4):383-407
    [21] Krenk S. Energy release rate of symmetric adhesive joints. Engineering Fracture Mechanics, 1992,43(4):549-559
    [22] Gilchrist M, Smith R. Fatigue growth of cohesive defects in T-peel joints. The Journal of Adhesion, 1993,42(3):179-190
    [23] Gilchrist M, Smith R. Static strength and fatigue performance of aluminium-adhesive T-peel joints. Journal of Aerospace Engineering, 1994,208(1):33-40
    [24] Palazotto AN, Birman V. Review of fracture in adhesive joints considering rocket motor application. Journal of Spacecraft and Rockets, 1995,32(3):538-544
    [25] Abou-Hamda M, Megahed M, Hammouda M. Fatigue crack growth in double cantilever beam specimen with an adhesive layer. Engineering Fracture Mechanics, 1998,60(5-6):605-614
    [26] Ashcroft I, Hughes D, Shaw S. Mode I fracture of epoxy bonded composite joints: 1. Quasi-static loading. International Journal of Adhesion and Adhesives, 2001,21(2):87-99
    [27] Al-Khanbashi A, El-Said EM. Effect of bond thickness on creep lifetime of adhesive joints under mode I. Journal of Adhesion Science and Technology, 2005,19(7):595-610
    [28] Banea MD, Da Silva LFM, Campilho RD. The effect of adhesive thickness on the mechanical behavior of a structural polyurethane adhesive. The Journal of Adhesion, 2015,91(5):331-346
    [29] Cabello M, Zurbitu J, Renart J, et al. A general analytical model based on elastic foundation beam theory for adhesively bonded DCB joints either with flexible or rigid adhesives. International Journal of Solids and Structures, 2016,94:21-34
    [30] Biel A, Stigh U. Cohesive zone modelling of nucleation, growth and coalesce of cavities. International Journal of Fracture, 2017,204(2):159-174
  • 加载中
计量
  • 文章访问数:  1025
  • HTML全文浏览量:  117
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回