EI、Scopus 收录
中文核心期刊

模拟Chelyabinsk小行星进入的烧蚀实验

罗跃, 王磊, 党雷宁, 刘进博, 张军, 柳森

罗跃, 王磊, 党雷宁, 刘进博, 张军, 柳森. 模拟Chelyabinsk小行星进入的烧蚀实验[J]. 力学学报, 2020, 52(5): 1362-1370. DOI: 10.6052/0459-1879-20-081
引用本文: 罗跃, 王磊, 党雷宁, 刘进博, 张军, 柳森. 模拟Chelyabinsk小行星进入的烧蚀实验[J]. 力学学报, 2020, 52(5): 1362-1370. DOI: 10.6052/0459-1879-20-081
Luo Yue, Wang Lei, Dang Leining, Liu Jinbo, Zhang Jun, Liu Sen. ARCJET ABLATION EXPERIMENT TO SIMULATE THE CHELYABINSK ASTEROID ENTRY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1362-1370. DOI: 10.6052/0459-1879-20-081
Citation: Luo Yue, Wang Lei, Dang Leining, Liu Jinbo, Zhang Jun, Liu Sen. ARCJET ABLATION EXPERIMENT TO SIMULATE THE CHELYABINSK ASTEROID ENTRY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1362-1370. DOI: 10.6052/0459-1879-20-081
罗跃, 王磊, 党雷宁, 刘进博, 张军, 柳森. 模拟Chelyabinsk小行星进入的烧蚀实验[J]. 力学学报, 2020, 52(5): 1362-1370. CSTR: 32045.14.0459-1879-20-081
引用本文: 罗跃, 王磊, 党雷宁, 刘进博, 张军, 柳森. 模拟Chelyabinsk小行星进入的烧蚀实验[J]. 力学学报, 2020, 52(5): 1362-1370. CSTR: 32045.14.0459-1879-20-081
Luo Yue, Wang Lei, Dang Leining, Liu Jinbo, Zhang Jun, Liu Sen. ARCJET ABLATION EXPERIMENT TO SIMULATE THE CHELYABINSK ASTEROID ENTRY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1362-1370. CSTR: 32045.14.0459-1879-20-081
Citation: Luo Yue, Wang Lei, Dang Leining, Liu Jinbo, Zhang Jun, Liu Sen. ARCJET ABLATION EXPERIMENT TO SIMULATE THE CHELYABINSK ASTEROID ENTRY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1362-1370. CSTR: 32045.14.0459-1879-20-081

模拟Chelyabinsk小行星进入的烧蚀实验

基金项目: 1)国家自然科学基金资助项目(11972358);国家自然科学基金资助项目(11802321)
详细信息
    通讯作者:

    罗跃,柳森

    罗跃,柳森

  • 中图分类号: P185.7

ARCJET ABLATION EXPERIMENT TO SIMULATE THE CHELYABINSK ASTEROID ENTRY

  • 摘要: 烧蚀是小行星极高速进入地球大气层后最重要的现象之一,在很大程度上决定了小行星的质量/尺寸变化、飞行轨迹、甚至光辐射特性. 为观测小行星材料在超高速高温流场中的烧蚀现象,在电弧加热器上开展了模拟Chelyabinsk小行星事件典型弹道状态(速度约5.6 km/s,高度17 km,流星体直径1 m)的烧蚀实验. 试件为钝头外形,头部半径20 mm,半锥角18$^\circ$. 作为对比,试件分别采用玄武岩和碳钢材料. 成功记录了清晰的烧蚀动态过程,观察到两种材料试件表面的熔融损失流动、以及玄武岩试件的蒸发喷射和崩裂剥落等现象,全程测得烧蚀气体发射光谱、试件实时外形变化、表面热图变化等数据. 分析结果显示了两种材料明显不同的烧蚀现象和质量损失机制:碳钢在高温气流冲击作用下溅射成大量微小液滴,跟随气流高速流失;玄武岩质量损失以熔融物剪切流动为主,并伴随少量块状剥落及蒸发喷射. 烧蚀时间为4 s,玄武岩和碳钢的质量损失及驻点后退量分别为37.9 g,72.7 g以及7.3 mm,13.1 mm,估算玄武岩材料的有效烧蚀焓约为2.6 MJ/kg,两种材料的烧蚀光谱测量组分与电镜能谱扫描结果吻合.
    Abstract: Ablation is one of the most important phenomenon when an asteroid enters the earth atmosphere at hypervelocity, which largely determines the mass loss, flight trajectory, and even radiation characteristics of the asteroid. To research the typical ablation process of asteroids when entering the earth atmosphere, experiments were conducted in an arc heater to simulate the typical conditions (velocity: 6 km/s, height: 17 km, diameter: 1 m) of Chelyabinsk asteroid event. The blunt-shaped test samples with the head radius of 20mm were made by carbon steel and basalt. In this work, the ablation process of test samples were clearly recorded, in which the melt flow of two different materials and the spallation of fragments as well as vaporization of basalt were observed. The evolutions of emission spectroscopy, recession profile and surface temperature profile during the whole process were acquired. The results indicate that the ablation phenomenon and the mechanism of mass loss of two materials are obviously different: Under the impact of the high-temperature flow, the carbon steel was sputtering into mass of tiny droplets which were washed away by the flow rapidly, while the mass loss of basalt were the shear flow of molten matter with small amount of massive spalling and evaporation spraying. All samples were exposed for four seconds in the plasma stream, mass loss and recession of the basalt and carbon steel were [37.9 g, 7.3 mm] and [72.7 g, 13.1 mm] respectively. The estimated effective enthalpy of ablation was 2.6 MJ/kg, the component measured by emission spectroscopy conforms to the electron microscopy (EDS) scanning.
  • [1] 柳森, 党雷宁, 赵君尧 等. 小行星撞击地球的超高速问题. 力学学报, 2018,50(6):1311-1327
    [1] ( Liu Sen, Dang Leining, Zhao Junyao, et al. Hypervelocity issues of Earth impact by asteroids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1311-1327 (in Chinese)) )
    [2] 柳森, 黄洁, 李毅 等. 行星防御中的超高速问题// 香山科学会议,北京, 2018
    [2] ( Liu Sen, Huang Jie, Li Yi, et al. Hyervelocity issues of planetary defense// Xiangshan Scientific Conference, Beijing, 2018 (in Chinese))
    [3] Dang LN, Liu S, Bai ZY. Hazard estimate of 2019 PDC impact scenario// 6th IAA Planetary Defense Conference, Washington DC, USA, 2019
    [4] Chen YK. Thermal ablation modeling for silicate materials// 54th AIAA Aerospace Science Meeting, 2016
    [5] Johnston CO, Samareh J. Aerothermodynamic characteristics of 16-22 km/s earth entry. AIAA 2015-3110
    [6] Johnston CO, Stern EC. Impact of coupled radiation and ablation on the aerothermodynamics of meteor entries// 47th AIAA Thermophysics Conference, Denver, USA, 2017
    [7] Johnston CO, Gnoffo PA, Sutton K. The influence of ablation on radiative heating for earth entry. Journal of Spacecraft and Rocket, 2009,46(3):481-491
    [8] Dias B, Magin TE. Stagnation-line simulations of meteor ablation// Annual BRAIN-BE Meeting, Brussels, Belgium, 2015
    [9] Girin OG. A hydrodynamic mechanism of meteor ablation: The melt-spraying mode. Astronomy Astrophysics, 2017,606, A63
    [10] Shi WB, Dang LN, Xiao Y, et al. Aerodynamic heating/ablation/conduction calculation of iron asteroid entering the earth's atmosphere at hypervelocity// 6th IAA Planetary Defense Conference, Washington DC, USA, 2019
    [11] 白智勇, 柳森, 党雷宁 等. 高温气体热力学特性及其在小行星进入问题中的应用// 全国第二届行星防御研讨会, 北京, 2019
    [11] ( Bai Zhiyong, Liu Sen, Dang Leining, et al. thermodynamic characteristics of high temperature gas and its application at the problem of asteroid entry// The 2nd Planetary Defense Symposium, Beijing, 2019 (in Chinese))
    [12] Milley EP, Hawkes RL, Ehrman JM. Meteor luminosity simulation through laser ablation of meteorites. Monthly Notices of the Royal Astronomical Society: Letter, 2007,382(1):L67-L71
    [13] White S, Stern EC. Laser ablation experiments on the Tamdakht H5 Chondrite// 80th Annual Meeting of the Meteoritical Society, 2017
    [14] Agrawal P, Jenniskens P, Stern EC, et al. Arcjet ablation of stony and iron Meteorites// 2018 Aerodynamic Measurement Technology and Ground Testing Conference, Georgia, USA, 2018
    [15] Fretter E. Ames arc jets in support for planetary defance// 1st International Workshop on PHA Characterization, Atmospheric Entry and Risk Assessment, 2015,09
    [16] Stern EC, Chen Y-K, White S, et al. Numerical and experimental investigation of meteoroid ablation// 1st International Workshop on PHA Characterization, Atmospheric Entry and Risk Assessment, 2015,09
    [17] Loehle S, Zander F, Hermann T, et al. Experimental simulation of meteorite ablation during earth entry using a plasma wind tunnel. Astrophysical Journal, 2017,837(2):112
    [18] Magin T. Investigation of the meteor phenomenon plasmatron wind-tunnel experiments and ground observations// 61st Course of the International School of Quantum Eletroncs, Erice, 2017
    [19] Watanabe M, Hironori S, Shinsuke A, et al. Development of artificial meteor for observation of upper atmosphere. Acta Astronautica, 2016,121:172-178
    [20] 张松贺, 杨远剑, 王茂刚 等. 电弧风洞热/透波联合试验技术研究及应用. 空气动力学学报, 2017,35(1):141-145
    [20] ( Zhang Songhe, Yang Yuanjian, Wang Maogang, et al. Studies and applications of thermal/wave-transmission test technique in arc-heated wind tunnel. Acta Aerodynamica Sinica, 2017,35(1):141-145 (in Chinese))
    [21] 罗跃, 周玮, 杨鸿 等. 电弧加热器湍流平板试验流场计算分析. 实验流体力学, 2017, ( 2):86-92
    [21] ( Luo Yue, Zhou Wei, Yang Hong, et al. CFD analysis of the arc heater turbulent flow field of flat plate testing. Journal of Experiments in Fluid Mechanics, 2017, ( 2):86-92 (in Chinese))
    [22] Prabhu D, Saunders D, Oishi T, et al. CFD analysis framework for arc-heated flowfields, I:stagnation testing in arc-jets at NASA ARC// 41st AIAA Thermophysics Conference, San Antonio, Texas, USA, 2009
    [23] Borovicka J, Spurny P, Brown P, et al. The trajectory, structure and origin of the chelyabinsk asteroidal impactor. Nature, 2013,503(7475):235-237
    [24] Larsen ES. The temperature of magmas. American Mineralogist, 1929,14:81-94
    [25] ASTM. E 458-72 Standard Test Method for Heat of Ablation.ASTM Standard.
    [26] ?pik EJ. Physics of Meteor Flight in the Atmosphere. Dover Press, 1958
  • 期刊类型引用(1)

    1. 孙加亮,田强,胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报. 2019(06): 1565-1586 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  2088
  • HTML全文浏览量:  481
  • PDF下载量:  168
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-03-10
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回