EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

挠性航天器动力学模型的非约束模态分析

宋新宇 戈新生

宋新宇, 戈新生. 挠性航天器动力学模型的非约束模态分析[J]. 力学学报, 2020, 52(4): 954-964. doi: 10.6052/0459-1879-20-072
引用本文: 宋新宇, 戈新生. 挠性航天器动力学模型的非约束模态分析[J]. 力学学报, 2020, 52(4): 954-964. doi: 10.6052/0459-1879-20-072
Song Xinyu, Ge Xinsheng. UNCONSTRAINED MODAL ANALYSIS OF DYNAMIC MODEL OF FLEXIBLE SPACECRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 954-964. doi: 10.6052/0459-1879-20-072
Citation: Song Xinyu, Ge Xinsheng. UNCONSTRAINED MODAL ANALYSIS OF DYNAMIC MODEL OF FLEXIBLE SPACECRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 954-964. doi: 10.6052/0459-1879-20-072

挠性航天器动力学模型的非约束模态分析

doi: 10.6052/0459-1879-20-072
基金项目: 1)国家自然科学基金(11732005)
详细信息
    通讯作者:

    戈新生

  • 中图分类号: O313.7

UNCONSTRAINED MODAL ANALYSIS OF DYNAMIC MODEL OF FLEXIBLE SPACECRAFT

  • 摘要: 挠性航天器动力学建模中的挠性耦合影响系数是动力学建模中的重要力学概念,它反映了航天器姿态和轨道运动与挠性附件的弹性振动效应. 挠性耦合影响系数间的恒等式关系,即惯性完备性准则,是挠性航天器动力学模型降阶和模态截断的重要依据. 以中心刚体带挠性附件航天器为研究对象,采用约束模态和非约束模态法描述挠性附件结构变形,利用欧拉-拉格朗日方程建立挠性航天器的动力学模型. 基于 Hughes 的研究成果,对挠性航天器的非约束模态恒等式及其用于动力学模型降阶的惯性完备性准则进行了证明和应用研究. 探讨了两种动力学模型惯量间的关系,并利用约束模态惯性完备性准则,推导了非约束模态惯性完备性准则. 最后,对中心刚体带双侧太阳帆板和带单侧太阳帆板构成的挠性航天器模型进行数值仿真计算,求出挠性附件非约束模态平动耦合系数,分析了非约束模态特征值和平动耦合系数随着刚柔质量比的变化情况,并尝试用非约束模态惯性完备性准则的质量特征恒等式对挠性航天器模型进行了检验.

     

  • [1] 陈士橹, 祝小平, 唐硕 等. 挠性航天器动力学的几个研究方向. 世界科技研究与发展, 1998,20(6):43-47
    [1] ( Chen Shilu, Zhu Xiaoping, Tang Shuo, et al. Some research fields in astrodynamics of flexible spacecraft. World Sci-Tech R & D, 1998,20(6):43-47 (in Chinese))
    [2] 曲广吉. 航天器动力学工程. 北京: 中国科学技术出版社, 2000
    [2] ( Qu Guangji. Spacecraft Dynamics Engineering Beijing: Science and Technology of China Press, 2000 (in Chinese))
    [3] Wang Y, Huston R. A lumped parameter method in the nonlinear analysis of flexible multibody systems. Computers & Structures, 1994,50(3):421-432
    [4] Sun C, He W, Hong J. Neural network control of a flexible robotic manipulator using the lumped spring-mass model// IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016
    [5] Benson D, Hallquist J. A simple rigid body algorithm for structural dynamics programs. International Journal for Numerical Methods in Engineering, 1986,22(3):723-749
    [6] Belytschko T, Hsieh B. Non-linear transient finite element analysis with convected co-ordinates. International Journal for Numerical Methods in Engineering, 1973,7(3):255-271
    [7] 蔡国平, 洪嘉振. 旋转运动柔性梁的假设模态方法研究. 力学学报, 2005,37(1):48-56
    [7] ( Cai Guoping, Hong Jiazhen. Research on hypothetical modal method of flexible beam with rotating motion. Chinese Journal of Theoretical and Applied Mechanics, 2005,37(1):48-56 (in Chinese))
    [8] Shabana AA. Flexible multibody dynamics: Review of past and recent developments. Multibody System Dynamics, 1997,1(2):189-222
    [9] 周志成, 王兴龙, 曲广吉. 大型空间柔性组合航天器动力学建模与控制. 中国科学: 物理学力学天文学, 2019,42(2):62-73
    [9] ( Zhou Zhicheng, Wang Xinglong, Qu Guangji. Dynamic modeling and control of large flexible spacecraft combination. Scientia Sinica Physica, Mechanica & Astronomica, 2019,42(2):62-73 (in Chinese))
    [10] 缪炳祺, 曲广吉. 采用系统模态时柔性航天器的混合坐标动力学方程. 航天器工程, 1998,7(3):39-44
    [10] ( Miao Bingqi, Qu Guangji. Mixed coordinate dynamic equation of flexible spacecraft with system mode. Spacecraft Engineering, 1998,7(3):39-44 (in Chinese))
    [11] 刘伦. 航天器姿态运动与太阳翼结构振动耦合分析及协同控制. [博士论文]. 哈尔滨:哈尔滨工业大学, 2017
    [11] ( Liu Lun. Coupled analysis and cooperative control for spacecraft attitude motion and solar panel vibration. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese))
    [12] 袁秋帆, 王超磊, 齐乃明 等. 单翼大挠性航天器全局模态动力学建模及试验. 宇航学报, 2019,40(4):369-377
    [12] ( Yuan Qiufan, Wang Chaolei, Qi Naiming, et al. Global dynamic modeling for a spacecraft with single large flexible structure and experimental study. Journal of Astronautics, 2019,40(4):369-377 (in Chinese))
    [13] 朱孟萍, 耿磊, 陈新龙 等. 带有阻尼机构的多柔体航天器动力学建模. 空间控制技术与应用, 2017,43(3):34-40
    [13] ( Zhu Mengping, Geng Lei, Chen Xinlong, et al. Dynamic modeling of flexible multi-body spacecraft with damping mechanism. Aerospace Control and Application, 2017,43(3):34-40 (in Chinese))
    [14] 黎凯, 张尧, 徐余军. 柔性空间机械臂在轨操作仿真与分析. 空间控制技术与应用, 2018,44(5):60-69
    [14] ( Li Kai, Zhang Yao, Xu Yujun. Simulation and analysis of on-orbit operations with flexible space manipulators. Aerospace Control and Application, 2018,44(5):60-69(in Chinese))
    [15] 方柳, 刘玉亮, 赵桂平. 考虑动力刚化的挠性航天器的动力学建模与分析. 兵器装备工程学报, 2017,38(9):67-72
    [15] ( Fang Liu, Liu Yuliang, Zhao Guiping. Dynamic modeling and analysis for flexible spacecraft with dynamic stiffening. Journal of Ordnance Equipment Engineering, 2017,38(9):67-72 (in Chinese))
    [16] 吕旺, 向明江, 叶文郁 等. 挠性卫星在轨非约束模态计算研究. 宇航学报, 2014,35(4):404-409
    [16] ( Lü Wang, Xiang Mingjiang, Ye Wenyu, et al. Research on calculation of on-orbit unconstrained modal of flexible satellite. Journal of Astronautics, 2014,35(4):404-409 (in Chinese))
    [17] 王首喆, 刘华清, 张庆展 等. 挠性充液航天器超近程逼近段动力学建模与控制. 中国空间科学技术, 2017,37(4):1-9
    [17] ( Wang Shouzhe, Liu Huaqing, Zhang Qingzhan, et al. Modeling and control for a liquid-filled spacecraft with flexible appendages in close proximity. Chinese Space Science and Technology, 2017,37(4):1-9 (in Chinese))
    [18] 孟得山. 柔性空间机器人操作大挠性航天器的动力学与振动控制. [博士论文]. 哈尔滨:哈尔滨工业大学, 2017
    [18] ( Meng Deshan. Dynamics and vibration control of a flexible space robot for manipulating a large flexible spacecraft. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese))
    [19] 魏进, 曹登庆, 于涛. 复合柔性结构全局模态函数提取与状态空间模型构建. 力学学报, 2019,51(2):341-353
    [19] ( Wei Jin, Cao Dengqing, Yu Tao. Extraction of global mode functions and construction of state space model for a composite flexible structure. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):341-353 (in Chinese))
    [20] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586
    [20] ( Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese))
    [21] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [21] ( Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [22] Barbieri E. Unconstrained and constrained mode expansions for a flexible slewing link. Transaction of ASME, 1998,110(6):416-421
    [23] Hablani HB. Constrained and unconstrained modes: some modeling aspects of flexible spacecraft. Journal of Guidance, Control and Dynamics, 1982,5(2):164-173
    [24] 陕晋军, 关英姿, 王凤鸣 等. 挠性结构的约束模态及非约束模态解法. 上海航天, 2000,17(5):19-22,27
    [24] ( Shan Jinjun, Guan Yingzi, Wang Fengming, et al. Solution of constrained mode and unconstrained mode of flexible structure. Aerospace Shanghai, 2000,17(5):19-22,27 (in Chinese))
    [25] 缪炳祺, 施高萍, 黄欢. 多柔体系统动力学建模中部件模态的选择. 工程设计学报, 2004,11(4):205-210
    [25] ( Miao Bingqi, Shi Gaoping, Huang Huan. Selection of component modes for multi-flexible system. Journal of Engineering Design, 2004,11(4):205-210 (in Chinese))
    [26] Hughes PC. Modal identities for elastic bodies with application to vehicle dynamic and control. Journal Applied Mechanic, 1980,47(1):177-184
    [27] Hughes PC, Skelton RE. Modal truncation for flexible spacecraft. Journal of Guidance, Control and Dynamics, 1981,4(3):291-297
    [28] 罗文. 太阳翼卫星的刚柔藕合动力学建模. [硕士论文]. 哈尔滨:哈尔滨工业大学, 2015
    [28] ( Luo Wen. Rigid flexible coupling dynamic modeling of satellite with solar wings. [Master Thesis]. Harbin: Harbin Institute of Technology, 2015 (in Chinese))
    [29] Hablani HB. Modal identities for multibody elastic spacecraft. Journal of Guidance, Control and Dynamics, 1991,l4(2):294-303
    [30] 徐小胜, 于登云, 曲广吉. 用于惯性完备性降价的模态恒等式研究. 航天器工程, 2003,12(2):23-34
    [30] ( Xu Xiaosheng, Yu Dengyun, Qu Guangji. Modal identity for inertia completeness reduction. Spacecraft Engineering, 2003,12(2):23-34 (in Chinese))
    [31] 李东旭. 挠性航天器结构动力学. 北京: 科学出版社, 2010
    [31] ( Li Xudong. Structural Dynamics of Flexible Spacecraft. Beijing: Science Press, 2010 (in Chinese))
    [32] 王建明, 刘又午, 洪嘉振. 大范围刚体运动对柔性梁模态形函数的影响分析. 中国机械工程, 2000,11(6):49-51
    [32] ( Wang Jianming, Liu Youwu, Hong Jiazhen. Analysis on the mode shapes of flexible beams affected by large overall motion. China Mechanical Engineering, 2000,11(6):49-51 (in Chinese))
    [33] 施高萍, 缪炳棋. 基于部件模态的多柔体系统非约束频率估计. 浙江工业大学学报, 2004,32(3):260-265
    [33] ( Shi Gaoping, Miao Bingqi. Based on component modes estimate of the unconstrained frequencies of flexible multibody systems. Journal of Zhejiang University of Technology, 2004,32(3):260-265 (in Chinese))
  • 加载中
计量
  • 文章访问数:  336
  • HTML全文浏览量:  33
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回