EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制

艾海平 陈力

艾海平, 陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制[J]. 力学学报, 2020, 52(4): 975-984. doi: 10.6052/0459-1879-20-068
引用本文: 艾海平, 陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制[J]. 力学学报, 2020, 52(4): 975-984. doi: 10.6052/0459-1879-20-068
Ai Haiping, Chen Li. BUFFER AND COMPLIANT DYNAMIC SURFACE CONTROL OF SPACE ROBOT CAPTURING SATELLITE BASED ON COMPLIANT MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 975-984. doi: 10.6052/0459-1879-20-068
Citation: Ai Haiping, Chen Li. BUFFER AND COMPLIANT DYNAMIC SURFACE CONTROL OF SPACE ROBOT CAPTURING SATELLITE BASED ON COMPLIANT MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 975-984. doi: 10.6052/0459-1879-20-068

基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制

doi: 10.6052/0459-1879-20-068
基金项目: 1)国家自然科学基金(11372073);国家自然科学基金(51741502);福建省工业机器人基础部件技术重大研发平台(2014H21010011)
详细信息
    通讯作者:

    陈力

  • 中图分类号: TP242

BUFFER AND COMPLIANT DYNAMIC SURFACE CONTROL OF SPACE ROBOT CAPTURING SATELLITE BASED ON COMPLIANT MECHANISM

  • 摘要: 研究了空间机器人在轨捕获非合作卫星过程避免关节受碰撞冲击破坏的缓冲从顺控制问题, 为此在机械臂与关节电机之间配置了一种柔性机构, 其作用在于: (1)在接触、碰撞阶段可通过其内置弹簧的变形来吸收被捕获卫星对空间机器人关节产生的冲击力矩; (2)在镇定运动阶段, 结合与之配合的缓冲从顺控制策略来适时开、关关节电机, 以保证关节受到的冲击力矩受限在安全范围. 首先, 利用多刚体系统理论获得配置柔性机构空间机器人及目标卫星分体系统动力学方程; 之后, 结合整个系统动量守恒关系, 捕获操作后系统运动几何关系及力的传递规律, 建立了两者形成联合体系统的动力学方程, 并计算了碰撞过程的冲击效应与冲击力. 为了实现失稳联合体系统的镇定控制, 提出了一种基于动态面的缓冲从顺控制方案. 上述控制方案可在实现吸收捕获操作产生的冲击力矩的同时, 还能在冲击力矩过大时适时开启、关闭关节电机, 以避免关节电机发生破坏; 此外, 动态面的引入避免了反演法存在的计算膨胀问题, 有效减少了计算量. 基于Lyapunov函数法证明了系统的稳定性, 并通过系统数值仿真结果验证了上述缓冲从顺控制策略的正确性.

     

  • [1] Meng QL, Liang JX, Ma O. Identification of all the inertial parameters of a non-cooperative object in orbit. Aerospace Science and Technology, 2019,91:571-582
    [2] 戈新生, 陈凯捷. 自由漂浮空间机器人路径优化的Legendre伪谱法. 力学学报, 2016,48(4):823-831
    [2] ( Ge Xinsheng, Chen Kaijie. Path planning of free floating space robot using Legendre pseudospectral method. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):823-831 (in Chinese))
    [3] 章定国. 多杆空间柔性机器人递推Lagrange动力学建模和仿真. 应用数学和力学, 2009,30(10):1202-1212
    [3] ( Zhang Dingguo. Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms. Applied Mathematics and Mechanics, 2009,30(10):1202-1212 (in Chinese))
    [4] Yu XY, Chen L. Observer-based two-time scale robust control of free-flying flexible-joint space manipulators with external disturbances. Robotica, 2017,35(11):1-17
    [5] Ai HP, Chen L. Variable structure sliding mode control based on passivity theory for free floating space robot// The 69th International Astronautical Congress, Bremen, Germany, 2018
    [6] Virgili-Llop J, Zagaris C, Zappulla R, et al. A convex-programming-based guidance algorithm to capture a tumbling object on orbit using a spacecraft equipped with a robotic manipulator. The International Journal of Robotics Research, 2019,38(1):40-72
    [7] Liu XF, Li HQ, Cai GP, et al. Dynamics analysis of flexible space robot with joint friction. Aerospace Science and Technology, 2015,47:164-176
    [8] 袁长清, 李俊峰, 王天舒 等. 基于逆系统方法的航天器姿态跟踪最优鲁棒控制. 工程力学, 2008,25(2):214-218
    [8] ( Yuan Changqing, Li Junfeng, Wang Tianshu, et al. An optimal and robust attitude-tracking control of spacecraft based on inverse system method. Engineering Mechanics, 2008,25(2):214-218 (in Chinese))
    [9] Bandyopadhyay S, Chung SJ, Hadaegh FY. Nonlinear attitude control of spacecraft with a large captured object. Journal of Guidance, Control, and Dynamic, 2016,39(4):754-769
    [10] 赵航, 赵阳, 田浩 等. 空间细胞机器人系统关键技术及其应用. 宇航学报, 2018,39(10):1071-1080
    [10] ( Zhao Hang, Zhao Yang, Tian Hao, et al. Key techniques and applications of space cellular robotic system. Journal of Astronautics, 2018,39(10):1071-1080 (in Chinese))
    [11] Lim J, Chung J. Dynamic analysis of a tethered satellite system for space debris capture. Nonlinear Dynamics, 2018,94:1-18
    [12] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586
    [12] ( Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese))
    [13] 付晓东, 陈力. 全柔性空间机器人运动振动一体化输入受限重复学习控制. 力学学报, 2020,52(1):171-183
    [13] ( Fu Xiaodong, Chen Li. An input limited repetitive learning control of flexible-base two-flexible-link and two-flexible-joint space robot with integration of motion and vibration. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):171-183 (in Chinese))
    [14] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169
    [14] ( Zhu An, Chen Li. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1156-1169 (in Chinese))
    [15] Shah S V, Sharf I, Misra A. Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system// AIAA Guidance, Navigation, and Control Conference, Boston, USA, 2013: 4521
    [16] 刘帅, 邬树楠, 刘宇飞 等. 空间机器人抓捕非合作目标的自主强化学习控制. 中国科学: 物理学力学天文学, 2019,49(2):113-122
    [16] ( Liu Shuai, Wu Shunan, Liu Yufei, et al. Autonomous reinforcement learning control for space robot to capture non-cooperative targets . Scientia Sinica Physica,Mechanica & Astronomica, 2019,49(2):113-122 (in Chinese))
    [17] Wang MM, Luo JJ, Yuan JP, et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dynamics, 2018,92(3):1023-1043
    [18] Boning P, Dubosky S. A kinematic approach to determining the optimal actuator sensor architecture for space robots. The International Journal of Robotics Research, 2011,30(9):1194-1204
    [19] 程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制. 力学学报, 2016,48(4):832-842
    [19] ( Cheng Jing, Chen Li. Mechanical analysis and calm control of dual-arm space robot for capturing a satellite. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):832-842 (in Chinese))
    [20] 梁捷, 陈力. 漂浮基空间机器人捕获卫星过程动力学模拟及捕获后混合体运动RBF神经网络控制. 航空学报, 2013,34(4):970-978
    [20] ( Liang Jie, Chen Li. Dynamics modeling for free-floating space-based robot during satellite capture and RBF neural network control for compound body sable movement. Acta Aeronautica et Astronautica Sinica, 2013,34(4):970-978 (in Chinese))
    [21] Uyama N, Hirano D, Nakanishi H, et al. Impedance-based contact control of a free-flying space robot with respect to coefficient of restitution// IEEE/SICE International Symposium on System Integration, Kyoto, Japan, IEEE, 2012: 1196-1201
    [22] Rekleitis G, Papadopoulos E. On-orbit cooperating space robotic servicers handling a passive object. IEEE Transactions on Aerospace and Electronic Systems, 2015,51(2):802-814
    [23] Meng DS, Lu WN, Xu WF, et al. Vibration suppression control of free-floating space robots with flexible appendages for autonomous. Acta Astronautica, 2018,151:904-918
    [24] Aghili F. Optimal control of a space manipulator for detumbling of a target satellite// IEEE International Conference on Robotics and Automation, Kobe, Japan: IEEE, 2009: 3019-3024
    [25] Dong H, Hu Q, Akella MR. Dual-Quaternion-based spacecraft autonomous rendezvous and docking under six-degree-of-freedom motion constraints. Journal of Guidance, Control, and Dynamics, 2018,41(5):1150-1162
    [26] Lampariello R, Hirzinger G. Generating feasible trajectories for autonomous on-orbit grasping of spinning debris in a useful time// IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, IEEE, 2013: 5252-5259
    [27] Stolfi A, Gasbarri P, Sabatini M. A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronautica, 2017,139:243-253
    [28] Gu X, Wang K, Cheng T, et al. Mechanical design of a 3-DOF humanoid soft arm based on modularized series elastic actuator// IEEE International Conference on Mechatronics and Automation, Beijing, China. IEEE, 2015: 1127-1131
    [29] Calanca A, Fiorini P. Understanding environment- adaptive force control of series elastic actuators. IEEE/ASME Transactions on Mechatronics, 2018,23(1):413-423
    [30] 韩京清. 自抗扰控制器及其应用. 控制与决策, 1998,13(1):19-23
    [30] ( Han Jinqing. Auto-disturbances-rejection controller and its applications. Control and Decision, 1998,13(1):19-23 (in Chinese))
    [31] Arcos-Legarda J, Cortes-Romero J, Beltran-Pulido A, et al. Hybrid disturbance rejection control of dynamic bipedal robots. Multibody System Dynamics, 2019,46(3):281-306
    [32] Swaroop D, Hedrick JK, Yip PP, et al. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control, 2000,45(10):1893-1899
    [33] Von E Karl D. Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits. Automatica, 2019,105:433-442
    [34] Gao ZQ. Scaling and bandwidth-parameterization based controller tuning// Proceedings of the American Control Conference, Denver, USA: IEEE, 2003: 4989-4996
    [35] Qing Z, Linda Q. On Stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics// IEEE Conference on Decision and Control, New Orleans, USA. IEEE, 2007: 12-14
    [36] Chen WS. Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks. IET Control Theory and Applications, 2009,3(10):1383-1394
  • 加载中
计量
  • 文章访问数:  723
  • HTML全文浏览量:  128
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回