EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动力学模态分解法的绕水翼非定常空化流场演化分析

谢庆墨 陈亮 张桂勇 孙铁志

谢庆墨, 陈亮, 张桂勇, 孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析[J]. 力学学报, 2020, 52(4): 1045-1054. doi: 10.6052/0459-1879-20-062
引用本文: 谢庆墨, 陈亮, 张桂勇, 孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析[J]. 力学学报, 2020, 52(4): 1045-1054. doi: 10.6052/0459-1879-20-062
Xie Qingmo, Chen Liang, Zhang Guiyong, Sun Tiezhi. ANALYSIS OF UNSTEADY CAVITATION FLOW OVER HYDROFOIL BASED ON DYNAMIC MODE DECOMPOSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054. doi: 10.6052/0459-1879-20-062
Citation: Xie Qingmo, Chen Liang, Zhang Guiyong, Sun Tiezhi. ANALYSIS OF UNSTEADY CAVITATION FLOW OVER HYDROFOIL BASED ON DYNAMIC MODE DECOMPOSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1045-1054. doi: 10.6052/0459-1879-20-062

基于动力学模态分解法的绕水翼非定常空化流场演化分析

doi: 10.6052/0459-1879-20-062
基金项目: 1)国家自然科学基金(51709042);国家自然科学基金(51639003);中国博士后科学基金(2019T120211);中国博士后科学基金(2018M631791);辽宁省自然科学基金(20180550619);海洋工程国家重点实验室开放基金(1803);中国科协青年人才托举工程项目(2018QNRC001);中央高校基本科研业务费专项(DUT20TD108);辽宁省"兴辽英才计划"(XLYC1908027)
详细信息
    通讯作者:

    孙铁志

  • 中图分类号: O351

ANALYSIS OF UNSTEADY CAVITATION FLOW OVER HYDROFOIL BASED ON DYNAMIC MODE DECOMPOSITION

  • 摘要: 空化是船舶和水下航行体推进器中经常发生的一种特殊流动现象,它具有强烈的非定常性,空化的发生往往会影响推进器的水动力性能和效率. 为探究绕水翼非定常空化流场结构,本文基于 Schnerr-Sauer 空化模型和 SST $k$-$\omega $ 湍流模型,开展绕二维水翼非定常空化流动数值预报与流场结构分析. 通过将数值预报的空泡形态演变和压力数据与试验结果对比,验证了建立的数值方法的有效性. 并基于动力学模态分解方法对空化流场的速度场进行模态分解,分析了各个模态的流场特征. 结果表明,第一阶模态对应频率为 0,代表平均流场;第二阶模态对应频率约为空泡脱落频率,揭示了空泡在水翼前缘周期性地生长与脱落,第三阶模态对应频率约为第二阶模态的 2 倍,揭示了两个大尺度旋涡在水翼后方存在融合行为. 第四阶模态对应频率约为第二阶模态的 3 倍,具有更高的频率,表征流场中存在一些小尺度旋涡的融合行为. 最后对不同空化数下的空化流场进行了模态分解分析,发现脱落空泡的旋涡结构随着空化数的减小而增大,第二阶模态频率随着空化数的减小而减小.

     

  • [1] Brennen. Cavitation and Bubble Dynamics: ed. New York: Oxford University Press, 1995
    [2] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展. 力学进展, 2018,48:259-298
    [2] ( Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process. Advances in Mechanics, 2018,48:259-298 (in Chinese))
    [3] 赵宇, 王国玉, 黄彪 等. 水翼叶顶间隙旋涡空化流动特性研究. 船舶力学, 2015,19(11):1304-1311
    [3] ( Zhao Yu, Wang Guoyu, Huang Biao, et al. Investigation of vortical cavitating flows in tip leakage region of a hydrofoil. Journal of Ship Mechanics, 2015,19(11):1304-1311 (in Chinese))
    [4] 曹彦涛, 彭晓星, 张国平 等. 绕三维扭曲水翼云空化形成及演化的试验研究. 船舶力学, 2014,18(5):485-491
    [4] ( Cao Yantao, Peng Xiaoxing, Zhang Guoping, et al. Experimental study on the generation and development of cloud cavitation around a three dimensional twisted hydrofoil. Journal of Ship Mechanics, 2014,18(5):485-491 (in Chinese))
    [5] Sun TZ, Wei YJ, Zou L, et al. Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid. International Journal of Multiphase Flow, 2019,111:82-100
    [6] Wu Q, Wang Y, Wang G. Experimental investigation of cavitating flow-induced vibration of hydrofoils. Ocean Engineering, 2017,144:50-60
    [7] 季斌, 程怀玉, 黄彪 等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019,49:428-479
    [7] ( Ji Bin, Cheng Huaiyu, Huang Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019,49:428-479 (in Chinese))
    [8] 唐庆宏, 于安, 郑源 等. 热力学效应对水翼云空化非定常特性影响研究. http://kns.cnki.net/kcms/detail/32.1814.TH.20191217.1456.004.html. 1-12, 2020-02-25
    [8] ( Tang Qinghong, Yu An, Zheng Yuan, et al. Investigation of thermodynamic effects on cloud cavitation dynamics around 3-D hydrofoil. http://kns.cnki.net/kcms/detail/32.1814.TH.20191217.1456.004.html. 1-12, 2020-02-25 (in Chinese))
    [9] 王巍, 唐滔, 卢盛鹏 等. 主动射流控制水翼空化的数值模拟与分析. 力学学报, 2019,51(6):1752-1760
    [9] ( Wang Wei, Tang Tao, Lu Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil cavitation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1752-1760 (in Chinese))
    [10] 陈铠杰, 万德成. 基于黏性修正 SST $k$-$\omega $ 模型的水翼空化流数值模拟计算. 水动力学研究与进展, 2019,34(2):224-231
    [10] ( Chen Kaijie, Wan Decheng. Numerical simulation on cavitation flow of hydrofoil with viscosity-modified SST $k$-$\omega $ turbulence model. Chinese Journal of Hydrodynamics, 2019,34(2):224-231 (in Chinese))
    [11] Knapp RT, Dailey JW, Hammitt FG. Cavitation. McGraw-Hill Book Company. Catalog Card Number 77-96428, 1970
    [12] Leroux J, Coutier-Delgosha O, Astolfi JA. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Physics of Fluids, 2005,17(5):1-20
    [13] 王雅赟, 王本龙, 刘桦. 二维水翼片空泡脱落及云空化数值模拟. 水动力学研究与进展 A 辑, 2014,29(2):175-182
    [13] ( Wang Yayun, Wang Benlong, Liu Hua. Numerical simulation of sheet cavity shedding and cloud cavitation on a 2D hydrofoil. Chinese Journal of Hydrodynamics, 2014,29(2):175-182 (in Chinese))
    [14] Sun T, Wei Y, Zou L, et al. Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid. International Journal of Multiphase Flow, 2019,111:82-100
    [15] 王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究. 力学学报, 2018,50(5):990-1002
    [15] ( Wang Changchang, Wang Guoyu, Huang Biao. Numerical simulation of shock wave dynamics in transient turbulent cavitating flows. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):990-1002 (in Chinese))
    [16] 孙铁志, 魏英杰, 王聪 等. 空化模型在低温流体空化流动三维计算中的应用与评价. 船舶力学, 2018,22(1):22-30
    [16] ( Sun Tiezhi, Wei Yingjie, Wang Cong, et al. Evaluation of cavitation model in three-dimensional computations of cryogenics liquid cavitating flows. Journal of Ship Mechanics, 2018,22(1):22-30 (in Chinese))
    [17] Guo Q, Huang X, Qiu B. Numerical investigation of the blade tip leakage vortex cavitation in a water jet pump. Ocean Engineering, 2019,187:106170
    [18] 彭凯, 陈闰路, 邵雪明 等. 轴流泵顶隙涡的数值模拟研究. 水动力学研究与进展, 2018,33(6):685-688
    [18] ( Peng Kai, Chen Runlu, Shao Xueming, et al. Numerical investigation of tip leakage vortex in axial-flow pump. Chinese Journal of Hydrodynamics, 2018,33(6):685-688 (in Chinese))
    [19] Cheng H, Long X, Ji B, et al. LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow. Ocean Engineering, 2019,186:106-115
    [20] Ji B, Luo XW, Arndt REA, et al. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. International Journal of Multiphase Flow, 2015,68(68):121-134
    [21] 高远, 黄彪, 吴钦 等. 绕水翼空化流动及振动特性的实验研究. 力学学报, 2015,47(6):1009-1016
    [21] ( Gao Yuan, Huang Biao, Wu Qin, et al. Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(6):1009-1016 (in Chinese))
    [22] 王巍, 唐滔, 卢盛鹏 等. 主动射流控制水翼空化的数值模拟与分析. 力学学报, 2019,51(6):1752-1760
    [22] ( Wang Wei, Tang Tao, Lu Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil cavitation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1752-1760 (in Chinese))
    [23] Cheng H, Long X, Ji B, et al. LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow. Ocean Engineering, 2019,186:106115
    [24] Brandao FL, Bhatt M, Mahesh K. Numerical study of cavitation regimes in flow over a circular cylinder. Journal of Fluid Mechanics, 2020,885
    [25] Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010,656:5-28
    [26] Rowley CW, Mezi I, Bagheri S, et al. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 2009,641:115-127
    [27] 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用. 空气动力学学报, 2018,36(2):163-179
    [27] ( Kou Jiaqing, Zhang Weiwei. Dynamic mode decomposition and its applications in fluid dynamics. Acta Aerodynamica Sinica, 2018,36(2):163-179 (in Chinese))
    [28] 韩亚东, 谭磊. 文丘里管空化流动的试验研究及动力学模态分解. 机械工程学报, 2019,55(18):173-179
    [28] ( Han Yadong, Tan Lei. Experiment and dynamic mode decomposition of cavitating flow in venturi. Journal of Mechanical Engineering, 2019,55(18):173-179 (in Chinese))
    [29] Liu M, Tan L, Cao S. Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil. Renewable Energy, 2019,139:214-227
    [30] Schnerr GH, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics// Fourth International Conference on Multiphase Flow. ICMF New Orleans, 2001,1
    [31] Menter FR, Rumsey CL. Assessment of two-equation turbulence models for transonic flows. Colorado Springs, CO, United States: American Institute of Aeronautics and Astronautics Inc, AIAA, 1994
    [32] Huang NE, Wu M, Qu W, et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry, 2003,19(3):245-268
  • 加载中
计量
  • 文章访问数:  1391
  • HTML全文浏览量:  229
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回