EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土体的本构模型和超重力物理模拟

陈云敏 马鹏程 唐耀

陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. doi: 10.6052/0459-1879-20-059
引用本文: 陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. doi: 10.6052/0459-1879-20-059
Chen Yunmin, Ma Pengcheng, Tang Yao. CONSTITUTIVE MODELS AND HYPERGRAVITY PHYSICAL SIMULATION OF SOILS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. doi: 10.6052/0459-1879-20-059
Citation: Chen Yunmin, Ma Pengcheng, Tang Yao. CONSTITUTIVE MODELS AND HYPERGRAVITY PHYSICAL SIMULATION OF SOILS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. doi: 10.6052/0459-1879-20-059

土体的本构模型和超重力物理模拟

doi: 10.6052/0459-1879-20-059
基金项目: 1)国家自然科学基金(51988101)
详细信息
    通讯作者:

    陈云敏

  • 中图分类号: TU43

CONSTITUTIVE MODELS AND HYPERGRAVITY PHYSICAL SIMULATION OF SOILS

  • 摘要: 数值模拟和物理模拟是分析土体沉降和稳定性的主要手段. 本构模型作为描述土体应力应变关系的数学表达式, 是数值模拟的基础. 土体具有碎散性, 这一基本物理特性导致了其具有压硬性、摩擦性和剪胀性, 这是土的力学特性区别于金属的主要特征, 在土体的本构模型中必须反映这3个基本特性. 传统土力学将土体的变形和强度分离考虑, 分别采用弹性理论和基于刚塑性模型的极限平衡理论分析, 虽然应用广泛, 但由于不能全面地反映土的基本力学特性, 计算结果的精度常常难以满足定量分析的需要. 剑桥模型作为第一个全面反映压硬性、摩擦性和剪胀性的弹塑性本构模型, 实现了变形和强度的统一, 能较好地描述饱和正常固结黏土的应力应变关系, 被视为是现代土力学的开端; 统一硬化模型通过引入一个独特的硬化参数进一步发展了剑桥模型, 将适用范围扩大到超固结黏土. 作者认为, 未来岩土体本构模型研究的挑战是: 如何考虑岩土体在受力过程中土骨架相变与多场耦合, 以解决目前本构模型尚无法定量分析的能源、交通、环境和水利相关的重大岩土工程问题. 超重力物理模拟具有缩尺效应和缩时效应, 克服了常重力物理模拟中模型的应力水平低于原型的缺点, 特别适用于大尺度、长历时问题的模拟. 相较数值模拟, 超重力物理模拟的优势在于能够检验本构模型的合理性, 揭示本构模型无法描述的未知特性. 最后, 介绍了采用数值模拟和物理模拟联合分析大直径钢管桩水平受荷特性的工程案例.

     

  • [1] Zhan LT, Zhang Z, Chen YM, et al. The 2015 Shenzhen catastrophic landslide in a construction waste dump: Reconstitution of dump structure and failure mechanisms via geotechnical investigations. Engineering Geology, 2018,238:15-26
    [2] 姚仰平. UH模型系列研究. 岩土工程学报, 2015,37(2):193-217
    [2] ( Yao Yangping. Advanced UH models for soils. Chinese Journal of Geotechnical Engineering, 2016,37(2):193-217 (in Chinese))
    [3] 姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述. 土木工程学报, 2012(3):135-158
    [3] ( Yao Yangping, Zhang Binyin, Zhu Jungao. Behaviors, constitutive models and numerical simulation of soils. China Civil Engineering Journal, 2012(3):135-158 (in Chinese))
    [4] 太沙基K. 理论土力学. 徐志英译. 北京: 地质出版社, 1960
    [4] ( Terzaghi K. Theoretical Soil Mechanics. Xu ZY translated. Beijing: Geological Publishing House, 1960 (in Chinese))
    [5] Roscoe KH, Schofield AN, Thurairajah A. Yielding of clays in states wetter than critical. Géotechnique, 1963,13(3):211-240
    [6] Roscoe KH, Burland JB. On the Generalized Stress-Strain Behaviour of Wet Clay. Engineering Plasticity, Cambridge: Cambridge University Press, 1968: 535-609
    [7] 李广信. 高等土力学. 北京: 清华大学出版社, 2004
    [7] ( Li Guangxin. Advanced Soil Mechanics. Beijing: Tsinghua University Press, 2004 (in Chinese))
    [8] 徐舜华, 徐光黎, 程瑶. 土的剑桥模型发展综述. 长江科学院院报, 2007,24(3):27-32
    [8] ( Xu Shunhua, Xu Guangli, Zhang Li. Review of Cam-clay model for soils. Journal of Yangtze River Scientific Research Institute, 2007,24(3):27-32 (in Chinese))
    [9] Nakai T, Matsuoka H. A generalized elastoplastic constitutive model for clay in three-dimensional stresses. Soils and Foundations, 1986,26(3):81-98
    [10] Newson TA. Validation of a non-associated critical state model. Computers and Geotechnics, 1998,23(4):277-287
    [11] Yin JH, Graham J. Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils. Canadian Geotechnical Journal, 1999,36(4):736-745
    [12] Yao YP, Sun DA, Matsuoka H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Computers and Geotechnics, 2008,35(2):210-222
    [13] Yao YP, Hou W, Zhou AN. UH model: Three-dimensional unified hardening model for overconsolidated clays. Géotechnique, 2009,59:451-469
    [14] 王海. 土工离心模型试验技术若干关键问题研究. [博士论文]. 哈尔滨: 中国地震局工程力学研究所, 2019
    [14] ( Wang Hai. Research on several crucial problems of geotechnical centrifuge modelling techniques. [PhD Thesis]. Haerbin: Institute of Engineering Mechanics,China Earthquake Administration, 2019 (in Chinese))
    [15] Craig WH. édouard Phillips (1821-89) and the idea of centrifuge modelling. Géotechnique, 1989,39(4):697-700
    [16] 郑赟, 郭红仙, 万元林 等. 离心机试验在岩土工程中的应用综述//第十三届全国现代结构工程学术研讨会, 2013
    [17] Pokrovsky GI. Studies of soil pressures and soil deformations by means of a centrifuge// Proceedings of the 1st ICSMFE, 1936,1:70-71
    [18] 王湛. 一天模拟千年——浙江大学牵头建世界最大超重力离心模拟与实验装置. 中国工程咨询, 2019(2):93-94
    [18] ( Wang Zhen. Simulate the millennium in one day——Zhejiang University leads the construction of the world's largest hypergravity centrifugal simulation and experimental device. China Consulting Engineers, 2019(2):93-94 (in Chinese))
    [19] Roscoe KH, Schofield AN. Mechanical behaviour of an idealised 'wet clay'//Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering. Wiesbaden, 1963,1:47-54
    [20] 沈珠江. 理论土力学. 北京: 中国水利水电出版社, 2000
    [20] ( Shen Zhujiang. Theoretical Soil Mechanics Beijing: China Water&Power Press, 2000 (in Chinese))
    [21] Biot MA. General Theory of three-Dimensional consolidation. Journal of Applied Physics, 1941,12(2):155
    [22] Duncan JM. Limitations of conventional analysis of consolidation settlement. Journal of Geotechnical Engineering, 1993,119(9):1333-1359
    [23] Davis EH, Raymond GP. A non-linear theory of consolidation. Géotechnique, 1965,15(2):161-173
    [24] Schofield A, Wroth P. Critical State Soil Mechanics. London: McGraw-Hill, 1968
    [25] Rowe PW. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact//Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962,269(1339):500-527
    [26] Li XS, Dafalias YF. Dilatancy for cohesionless soils. Géotechnique, 2000,50(4):449-460
    [27] Mita KA, Dasari GR, Lo KW. Performance of a three-dimensional Hvorslev-modified Cam clay model for overconsolidated clay. International Journal of Geomechanics, 2004,4(4):296-309
    [28] 姚仰平, 祝恩阳. 基于耦合应力建立土本构模型的方法. 岩土工程学报, 2010,32(12):1922-1929
    [28] ( Yao Yangping, Zhu Enyang. Establishing soil constitutive model based on coupling stress. Chinese Journal of Geotechnical Engineering, 2010,32(12):1922-1929 (in Chinese))
    [29] Nakai T, Hinokio M. A simple elastoplastic model for normally and over consolidated soils with unified material parameters. Soils and Foundations, 2004,44(2):53-70
    [30] Klar A, Soga K, Ng MYA. Coupled deformation-flow analysis for methane hydrate extraction. Geotechnique, 2010,60(10):765-776
    [31] Arenillas A, Pevida C, Rubiera F. Comparison between the reactivity of coal and synthetic coal model. Fuel, 2003,82(15):2001-2006
    [32] Chen YM, Xu WJ, Ling DS, et al. A degradation-consolidation model for the stabilization behavior of landfilled municipal solid waste. Computers and Geotechnics, 2020,118:103341
    [33] Sun YF, Xiao Y, Ju W. Bounding surface model for ballast with additional attention on the evolution of particle size distribution. Science China Technological Sciences, 2014,57(7):1352-1360
    [34] 朱晟, 钟春欣, 郑希镭 等. 堆石体的填筑标准与级配优化研究. 岩土工程学报, 2018,40(1):114-121
    [34] ( Zhu Sheng, Zhong Chunxin, Zheng Xilei, et al. Filling standards and gradation optimization of rockfill materials. Chinese Journal of Geotechnical Engineering, 2018,40(1):114-121 (in Chinese))
    [35] Mcdowell GR, Bolton MD, Robertson D. The fractal crushing of granular materials. Journal of the Mechanics and Physics of Solids, 1996,44(12):2079-2102
    [36] 曾兴. 黏土屏障重金属迁移离心模拟相似性及击穿时间评估方法. [博士论文]. 杭州: 浙江大学, 2015
    [36] ( Zeng Xing. Similitude for centrifuge modelling of heavy metal migration in clay barrier and method for evaluating breakthrough time. [PhD Thesis]. Zhejiang University, 2015 (in Chinese))
    [37] Zhou YG, Chen YM. Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 2007,133(8):959-972
    [38] Kayen R, Moss RES, Thompson EM, et al. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 2013,139(3):407-419
    [39] Zhu B, Qian H, Kong D, et al. Field trials on monotonic behaviour of a driven pile at an offshore wind farm in China. Marine Georesources & Geotechnology, 2019: 1-11
    [40] Hu HJE, Leung CF, Chow YK, et al. Centrifuge modelling of SCR vertical motion at touchdown zone. Ocean Engineering, 2011,38(7):888-899
  • 加载中
计量
  • 文章访问数:  1684
  • HTML全文浏览量:  236
  • PDF下载量:  606
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-02
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回