EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属玻璃基复合材料的变形行为及本构关系研究综述

张娟 康国政 饶威

张娟, 康国政, 饶威. 金属玻璃基复合材料的变形行为及本构关系研究综述[J]. 力学学报, 2020, 52(2): 318-332. doi: 10.6052/0459-1879-20-038
引用本文: 张娟, 康国政, 饶威. 金属玻璃基复合材料的变形行为及本构关系研究综述[J]. 力学学报, 2020, 52(2): 318-332. doi: 10.6052/0459-1879-20-038
Zhang Juan, Kang Guozheng, Rao Wei. REVIEW ON THE DEFORMATION BEHAVIOR AND CONSTITUTIVE EQUATIONS OF METALLIC GLASS MATRIX COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 318-332. doi: 10.6052/0459-1879-20-038
Citation: Zhang Juan, Kang Guozheng, Rao Wei. REVIEW ON THE DEFORMATION BEHAVIOR AND CONSTITUTIVE EQUATIONS OF METALLIC GLASS MATRIX COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 318-332. doi: 10.6052/0459-1879-20-038

金属玻璃基复合材料的变形行为及本构关系研究综述

doi: 10.6052/0459-1879-20-038
基金项目: 1)国家自然科学基金资助项目(11372259);国家自然科学基金资助项目(11532010)
详细信息
    通讯作者:

    康国政

  • 中图分类号: O344.1

REVIEW ON THE DEFORMATION BEHAVIOR AND CONSTITUTIVE EQUATIONS OF METALLIC GLASS MATRIX COMPOSITES

  • 摘要: 金属玻璃及其复合材料因其优良的力学性能而具有良好的应用前景,相关研究方兴未艾. 本文主要总结国内外的研究成果并结合本课题组的最新研究工作,针对块体金属玻璃基复合材料的变形行为、增韧机理和本构关系研究现状进行较为全面的综述. 首先,对近几十年来在块体金属玻璃基体材料的变形行为与失效机理以及本构关系研究方面的丰硕成果进行简要回顾. 其次,从实验研究和数值模拟两方面,重点对金属玻璃基复合材料的变形行为与失效机理研究成果进行介绍,总结了金属玻璃基复合材料的塑性变形、增韧机理及影响因素. 然后,对金属玻璃基复合材料的本构关系研究最新进展进行评述,重点介绍了均匀化方法在该领域的应用. 作为代表,较为详细地介绍了作者新近提出的一个二次均匀化的方法,并在此基础上,结合纳米孔洞作为自变量的失效判据而建立了本构模型,该模型对金属玻璃基复合材料的变形和失效行为进行了合理预测. 最后,对该领域的研究现状进行简单的总结,并对未来的研究问题进行展望.

     

  • [1] Klement W, Willens RH, Duwez P . Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960,187:869-870
    [2] Inoue A, Zhang T, Masumoto T . Al-La-Ni Amorphous alloys with a wide supercooled liquid region. Mater Trans, JIM, 1989,30:965-972
    [3] Peker A, Johnson WL . A highly processable metallic glass: Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10.0}$Be$_{22.5}$. Appl Phys Lett, 1993,63:2342-2344
    [4] 胡壮麒, 张海峰 . 块状非晶合金及其复合材料研究进展. 金属学报, 2010,46(11):1391-1421
    [4] ( Hu Zhuangqi, Zhang Haifeng . Recent progress in the area of bulk armorphous alloys and composites. Acta Metallurgica Sinica, 2010,46(11):1391-1421 (in Chinese))
    [5] Choi-yim H, Busch R, Koester U , et al. Synthesis and characterization of particulate reinforced Zr$_{57}$Nb$_{5}$Al$_{10 }$Cu$_{15.4}$Ni$_{12.6}$ bulk metallic composites. Acta Mater, 1999,47:2455-2462
    [6] Chen G, Cheng JL, Liu CT . Large-sized Zr-based bulk- metallic-glass composite with enhanced tensile properties. Intermetallics, 2012,28:25-33
    [7] Qiao JW, Sun AC, Huang EW , et al. Tensile deformation micro-mechanisms for bulk metallic glass matrix composites: From work-hardening to softening. Acta Mater., 2011,59:4126-4137
    [8] Qiao JW, Jia H, Liaw PK . Metallic glass matrix composites. Mater Sci Eng R, 2016,100:1-69
    [9] Kato H, Inoue A . Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloys containing ZrC particles. Mater, Trans, 1997,38:793-800
    [10] Ma G, Zhang HF, Li H , et al. Wetting behavior of CuZr-based BMGs/alumina system. J Alloys and Compounds, 2008,462:343-346
    [11] Liu N, Ma G, Zhang HF , et al. Wetting behavior of Zr-based bulk metallic glasses on W substrate. Mater Lett, 2008,62:3195-3197
    [12] Li JB, Jang JSC, Li C , et al. Significant plasticity enhancement of Zr Cu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles. Mater Sci Eng A, 2012,551:249-254
    [13] Trexler MM, Thadhani NN . Mechanical properties of bulk metallic glasses. Progr Mater Sci, 2010,55:759-839
    [14] Wang WH . The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012,57:487-656
    [15] Dai LH. Shear Banding in Bulk Metallic Glasses. In: Dodd B, Bai YL, eds. Adiabatic Shear Localization: Frontiers and Advances. Massachusetts: Elsevie, 2012. 311-361
    [16] 蒋敏强 . 非晶合金塑性理论研究进展. 中国材料进展, 2014,33(5):257-264
    [16] ( Jiang Minqing . Advances in plasticity theory for amorphous alloys. Materials China, 2014,33(5):257-264(in Chinese))
    [17] 雷现奇, 魏宇杰 . 金属非晶的强度和变形特性. 固体力学学报, 2016,37(4):312-339
    [17] ( Lei Xianqi, Wei Yujie . The strength and deformation behavior of metallic glasses. Chinese Journal of Solid Mechanics, 2016,37(4):312-339 (in Chinese))
    [18] Volkert CA, Donohue A, Spaepen F . Effect of sample size on deformation in amorphous metals. J Appl Phys, 2008,103:083539
    [19] Wu F, Zhang Z, Mao SX . Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater, 2009,57:257-266
    [20] Jang D, Greer JR . Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nature Mater, 2010,9:215-219
    [21] Chen D, Jang D, Guan KM , et al. Nanometallic glasses: size reduction brings ductility, surface state drives its extent. Nano Lett, 2013,13:4462-4468
    [22] Polk DE, Turnbull D . Flow of melt and glass forms of metallic alloys. Acta Metall, 1972,20:493-498
    [23] Pampillo CA . Localized shear deformation in a glassy metal. Scripta Metall, 1972,6:915-917
    [24] Chen HS, Leamy HJ, Obrien MJ . Bending deformation in metallic glasses. Scripta Metall, 1973,7:415-419
    [25] Greer AL, Cheng YQ, Ma E . Shear bands in metallic glasses. Mater Sci Eng R, 2013,74(4):71-132
    [26] Schuster BE, Wei Q, Ervin MH , et al. Bulk and microscale compressive properties of a Pd-based metallic glass. Scripta Mater, 2007,57:517-520
    [27] Pampillo CA, Chen HS . Comprehensive plastic deformation of a bulk metallic glass. Mater Sci Eng A, 1974,13:181-188
    [28] Wright WJ, Schwarz RB, Nix WD . Localized heating during serrated plastic flow in bulk metallic glasses. Mater Sci Eng A, 2001, 319-321:229-232
    [29] Jiang WH, Atzmon M . The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: A high-resolution transmission electron microscopy study. Acta Mater, 2003,51:4095-4105
    [30] Jiang MQ, Ling Z, Meng JX , et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Phil Mag, 2008,88:407-426
    [31] Sun BA, Wang WH . The fracture of bulk metallic glasses. Prog Mater Sci, 2015,74:211-307
    [32] Spaepen F . A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall, 1977,25:407-415
    [33] Johnson WL, Lu J, Demetriou MD . Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids-A selfconsistent dynamic free volume model. Intermetallics, 2002,10:1039-1046
    [34] Anand L, Su C . A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J Mech Phys Solids, 2005,53:1362-1396
    [35] Yang Q, Mota A, Ortiz M . A Finite-deformation constitutive model of bulk metallic glass plasticity. Comput Mech, 2006,37:194-204
    [36] Gao YF, Yang B, Nieh TG . Thermomechanical instability analysis of inhomogeneous deformation in amorphous alloys. Acta Mater, 2007,55:2319-2327
    [37] Thamburaja P, Ekambaram R . Coupled thermo-mechanical modelling of bulk-metallic glasses: Theory, finite-element simulations and experimental verification. J Mech Phys Solids, 2007,55:1236-1273
    [38] Huang R, Suo Z, Prevost JH , et al. Inhomogeneous deformation in metallic glasses. J Mech Phys Solids, 2002,50:1011-1127
    [39] Jiang MQ, Dai LH . On the origin of shear banding instability in metallic glasses. J Mech Phys Solids, 2009,57:1267-1292
    [40] Thamburaja P . Length scale effects on the shear localization process in metallic glasses: A theoretical and computational study. J Mech Phys Solids, 2011,59:1552-1575
    [41] Rao W, Zhang J, Kang GZ . A failure mechanism based constitutive model for bulk metallic glass. Mech Mater, 2018,125:52-69
    [42] Argon AS . Plastic deformation in metallic glasses. Acta Metall, 1979,27:47-58
    [43] Eshelby JD . The Determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Roy Soc London A, 1957,241:376-396
    [44] Spaepen F. Defects in amorphous metals//Balian R, Kleman M, Poirier J. Physics of Defects. Amsterdam: North-Hollan Press, 1981: 133-174
    [45] Schall P, Weitz DA, Spaepen F . Structural rearrangements that govern flow in colloidal glasses. Science, 2007,318:1895-1899
    [46] Jiang MQ, Ling Z, Meng JX , et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Phil Mag, 2008,88:407-426
    [47] Falk ML, Langer JS . Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E, 1998,57:7192-7205
    [48] Malandro DL, Lacks DJ . Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J Chem Phys, 1999,110:4593-4601
    [49] Langer JS . Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature. Phys Rev E, 2004,70:041502
    [50] Demetriou MD, Harmon JS, Tao M , et al. Cooperative shear model for the rheology of glass-forming metallic liquids. Phys Rev Lett , 2006,97:065502
    [51] Jiao W, Sun BA, Wen P , et al. Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses. Appl Phys Lett, 2013,103:081904
    [52] Zhu Z, Wen P, Wang DP , et al. Characterization of flow units in metallic glass through structural relaxations. J Appl Phys, 2013,114:083512
    [53] 王铮, 汪卫华 . 非晶合金中的流变单元. 物理学报, 2017,66(17):176103 (in Chinese))
    [53] ( Wang Zheng, Wang Weihua . Flow unit model in metallic glasses. Acta Phys Sin, 2017,66(17):176103 (in Chinese))
    [54] 汪卫华 . 非晶中"缺陷"-流变单元研究. 中国科学: 物理学力学天文学, 2014,44(4):396-405
    [54] ( Wang Weihua . Flow units: the "defects" of amorphous alloys. Scientia Sinica: Physica, Mechanica & Astronomica, 2014,44(4):396-405 (in Chinese))
    [55] Choi-yim H, Busch R, Koester U , et al. Synthesis and characterization of particulate reinforced Zr$_{57}$Nb$_{5}$Al$_{10 }$Cu$_{15.4}$Ni$_{12.6}$ bulk metallic composites. Acta Mater, 1999,47:2455-2462
    [56] Chen G, Cheng JL, Liu CT . Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties. Intermetallics, 2012,28:25-33
    [57] Qiao JW, Sun AC, Huang EW , et al. Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening. Acta Mater, 2011,59:4126-4137
    [58] Inoue A, Zhang W, Tsurui T , et al. Unusual room- temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Phil Mag Lett, 2005,85:221-229
    [59] Szuecs F, Kim CP, Johnson WL . Mechanical properties of Zr$_{56.2}$Ti$_{13.8}$Nb$_{5.0}$Cu$_{6.9}$Ni$_{5.6}$Be$_{12.5}$ ductile phase reinforced bulk metallic glasses composite. Acta Mater, 2001,49:1507-1513
    [60] Li JB, Zhang HZ, Jang JSC , et al. Viscous flow and thermoplastic forming ability of a Zr-based bulk metallic glass composite with Ta dispersoids. J Alloys and Compounds, 2012,536S:S165-S170
    [61] Conner RD, Choi-Yim H, Johnson WL . Mechanical properties of Zr$_{57}$Nb$_{5}$Al$_{10}$Cu$_{15.4}$Ni$_{12.6}$ metallic glass matrix particulate composites. J Mater Res, 1999,14:3292-3297
    [62] Qiu KQ, Wang AM, Zhang HF , et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics, 2002,10:1283-1288
    [63] Dong W, Zhang H, Sun WS , et al. Zr-Cu-Ni-Al-Ta glassy matrix composites with enhanced plasticity. J Mater Res, 2006,21:1490-1499
    [64] Siegrist ME, L?ffler JF . Bulk metallic glass-graphite composites. Scripta Mater, 2007,56:1079-1082
    [65] Jang JSC, Li TH, Tsai PH , et al. Critical obstacle size to deflect shear banding in Zr-based bulk metallic glass composites. Intermetallics, 2015,64:102-105
    [66] Lee JC, Kim YC, Ahn JP , et al. Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater, 2005,53:129-139
    [67] Hofmann DC, Suh JY, Wiest A , et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008,451:1085-1089
    [68] Jang JSC, Jian SR, Li TH , et al. Structural and mechanical characterizations of ductile Fe particles-reinforced Mg-based bulk metallic glass composites. J Alloys and Compounds, 2009,485:290-294
    [69] Jang JSC, Ciou JY, Li TH , et al. Dispersion toughening of Mg-based bulk metallic glass reinforced with porous Mo particles. Intermetallics, 2010,18:451-458
    [70] Pauly S, Gorantla S, Wang G , et al. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Mater, 2010,9:473-477
    [71] Song K, Pauly S, Sun BA , et al. Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites. AIP Advances, 2013,3:012116
    [72] Brink T, Peterlechner M, R?sner H , et al. Influence of crystalline nanoprecipitates on shear-band propagation in Cu-Zr-based metallic glasses. Phys Rev Appl, 2016,5:054005
    [73] Sarac B, Schroers J . Designing tensile ductility in metallic glasses. Nature Comm, 2013,4:2158
    [74] Lee SW, Huh MY, Fleury E , et al. Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys. Acta Mater, 2006,54:349-355
    [75] Song G, Lee C, Hong SH , et al. Martensitic transformation in a B2-containing CuZr-based BMG composite revealed by in situ neutron diffraction. J Alloys and Compounds, 2017,72:714-721
    [76] Liu Y, Yao H, Zhang T , et al. Designing ductile CuZr-based metallic glass matrix composites. Mater Sci Eng A, 2017,682:542-549
    [77] Zhou H, Qu S, Yang W . An atomistic investigation of structural evolution in metallic glass matrix composites. Int J Plast, 2013,44:147-160
    [78] Avchaciov K, Ritter Y, Djurabekova F , et al. Controlled softening of Cu64Zr36 metallic glass by ion irradiation. Appl Phys Lett, 2013,102:181910
    [79] Sopu D, Stoica M, Eckert J . Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations. Appl Phys Lett, 2015,106:211902
    [80] Brandl C, Germann TC, Misra A . Structure and shear deformation of metallic crystalline-amorphous interfaces. Acta Mater, 2013,61:3600-3611
    [81] Gao X, Muser MH, Kong LT , et al. Atomic structure and energetics of amorphous-crystalline CuZr interfaces: A molecular dynamics study. Modell Simul Mater Sci Eng, 2014,22:065007
    [82] Shi Y, Falk ML . A computational analysis of the deformation mechanisms of a nanocrystal-metallic glass composite. Acta Mater, 2008,56:995-1000
    [83] Cheng B, Trelewicz JR . Mechanistic coupling of dislocation and shear transformation zone plasticity in crystalline-amorphous nanolaminates. Acta Mater, 2016,117:293-305
    [84] Jiang Y, Qiu K . Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites. Mater Des, 2015,65:410-416
    [85] Jiang Y, Shi X, Qiu K . Numerical study of shear banding evolution in bulk metallic glass composites. Mater Des, 2015,77:32-40
    [86] Shete MK, Singh I, Narasimhan R , et al. Effect of strain hardening and volume fraction of crystalline phase on strength and ductility of bulk metallic glass composites. Scripta Mater, 2016,124:51-55
    [87] Shete MK, Dutta T, Singh I , et al. Tensile stress-strain response of metallic glass matrix composites reinforced with crystalline dendrites: Role of dendrite morphology. Intermetallics, 2017,83:70-82
    [88] Jiang Y, Sun L, Wu Q , et al. Enhanced tensile ductility of metallic glass matrix composites with novel microstructure. J Non-crystalline Solids, 2017,459:26-31
    [89] Fan J, Qiao JW, Wang Z , et al. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites. Sci Rep, 2017,7:1877
    [90] Zhang X, Ren J, Ding X . Synergistic effects among the structure, martensite transformation and shear band in a shape memory alloy-metallic glass composite. Appl Comp Mater, 2019,26:455-467
    [91] Chu Z, Yuan G, Kato H , et al. The study on interface and property of TiNb/Zr-based metallic glassy composite fabricated by SPS. J Non-crystalline Solids, 2015,426:83-87
    [92] Jeon C, Lee H, Kim CP , et al. Effects of effective dendrite size on tensile deformation behavior in Ti-based dendrite-containing amorphous matrix composites modified from Ti-6Al-4V alloy. Metall Mater Trans A, 2015,46:235-250
    [93] Rao W, Zhang J, Kang GZ , et al. Numerical simulation on the deformation behaviors of bulk metallic glass composites under uniaxial tension and compression. Comp Struct, 2018,187:411-428
    [94] Marandi K, Shim VPW . A finite-deformation constitutive model for bulk metallic glass composites. Contin Mech Therm, 2014,26:321-341
    [95] Jiang Y . Micromechanics constitutive model for predicting the stress-strain relations of particle toughened bulk metallic glass matrix composites. Intermetallics, 2017,90:147-151.
    [96] Weng GJ . The overall elastoplastic stress-strain relations of dual-phase metals. J Mech Phys Solids, 1990,38:419-441
    [97] Jiang Y . Mesoscopic constitutive model for predicting failure of bulk metallic glass composites based on the free-volume model. Materials, 2018,11:327
    [98] Rao W, Zhang J, Kang GZ , et al. A meso-mechanical constitutive model for the bulk metallic glass composites with considering the local failure of matrix. Int J Plast, 2019,115:238-267
    [99] Qiao JW, Zhang T, Yang FQ , et al. A tensile deformation model for in-situ dendrite/metallic glass matrix composites. Sci Rep, 2013,3:2816
    [100] Xia SH, Wang JT . A micromechanical model of toughening behavior in the dual-phase composite. Int J Plast, 2010,26:1442-1460
  • 加载中
计量
  • 文章访问数:  816
  • HTML全文浏览量:  111
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-15
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回