EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过表面机械加工调控Zr52.5Cu17.9Ni14.6Al10Ti5非晶合金的结构和韧性

陈恳 黄波 王庆 王刚

陈恳, 黄波, 王庆, 王刚. 通过表面机械加工调控Zr52.5Cu17.9Ni14.6Al10Ti5非晶合金的结构和韧性[J]. 力学学报, 2020, 52(2): 400-407. doi: 10.6052/0459-1879-20-030
引用本文: 陈恳, 黄波, 王庆, 王刚. 通过表面机械加工调控Zr52.5Cu17.9Ni14.6Al10Ti5非晶合金的结构和韧性[J]. 力学学报, 2020, 52(2): 400-407. doi: 10.6052/0459-1879-20-030
Chen Ken, Huang Bo, Wang Qing, Wang Gang. STRUCTURE AND TOUGHNESS MODULATION OF A Zr52.5Cu17.9Ni14.6Al10Ti5 METALLIC GLASS BY SURFACE MECHANICAL ATTRITION TREATMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 400-407. doi: 10.6052/0459-1879-20-030
Citation: Chen Ken, Huang Bo, Wang Qing, Wang Gang. STRUCTURE AND TOUGHNESS MODULATION OF A Zr52.5Cu17.9Ni14.6Al10Ti5 METALLIC GLASS BY SURFACE MECHANICAL ATTRITION TREATMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 400-407. doi: 10.6052/0459-1879-20-030

通过表面机械加工调控Zr52.5Cu17.9Ni14.6Al10Ti5非晶合金的结构和韧性

doi: 10.6052/0459-1879-20-030
基金项目: 1)国家自然科学基金(51901122);国家自然科学基金(51871140);上海市自然科学基金委资助项目
详细信息
    通讯作者:

    黄波

  • 中图分类号: TG135$^+$.4

STRUCTURE AND TOUGHNESS MODULATION OF A Zr52.5Cu17.9Ni14.6Al10Ti5 METALLIC GLASS BY SURFACE MECHANICAL ATTRITION TREATMENT

  • 摘要: 作为一种新型结构材料, 非晶态合金的韧性需要进一步提高. 提高非晶态合金韧性的方法有引入枝晶相、调整其成分改变其泊松比影响其剪切带衍生、裂纹扩展等.本文通过表面机械加工的方法来调控非晶态合金的微观结构及韧性. 我们采用真空电弧熔炼、亚稳态薄板离心浇铸系统制备了Zr52.5Cu17.9Ni14.6Al10Ti5 (原子百分比) (Vit105)非晶合金板,并用表面机械研磨处理方法(surface mechanical attrition treatment, SMAT), 在Vit105板上形成纳米尺度局域类晶体序结构. 基于差示扫描量热分析、纳米压痕实验, 我们发现SMAT处理后的Vit105合金板表面附近弛豫焓更低, 微观结构更加均匀、稳定. 通过显微维氏硬度计测试, 发现SMAT处理后样品的表面附近硬度增大,硬度值分布也更均匀. 通过三点弯断裂实验, 可得到SMAT处理后合金板缺口韧度值从70.7 ± 4.7 MPa·m1/2提高到112.8 ± 3.7 MPa·m1/2. SMAT处理后合金板断裂后, 缺口前端剪切带密度比未处理的更大. Vit105合金板韧性的提高源于SMAT处理对剪切带萌生的促进作用. 该研究表明,表面机械加工可以在非晶态合金中形成局域类晶体有序结构, 影响其结构均匀性, 增大其硬度, 促进剪切带萌生, 提高其韧性. 表面机械加工作为一种新型的改变材料性能的手段, 具有广阔的应用前景.

     

  • [1] Klement W, Willens R, Duwez P . Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960,187(4740):869-870
    [2] Chen H, Turnbull D . Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metallurgica, 1969,17(8):1021-1031
    [3] Chen H . Alloying effect on the viscous flow in metallic glasses. Journal of Non-Crystalline Solids, 1978,29(2):223-229
    [4] Inoue A, Kita K, Zhang T , et al. An amorphous La$_{55}$Al$_{25}$Ni$_{20}$ alloy prepared by water quenching. Materials transactions, JIM, 1989,30(9):722-725
    [5] Inoue A, Zhang T, Masumoto T . Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM, 1990,31(3):177-183
    [6] Peker A, Johnson WL . A highly processable metallic glass: Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10.0}$Be$_{22.5}$. Applied Physics Letters, 1993,63(17):2342-2344
    [7] Wang WH, Dong C, Shek CH . Bulk metallic glasses. Materials Science and Engineering: R, 2004,44:45
    [8] Hofmann DC, Suh JY, Wiest A , et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008,451(7182):1085-1089
    [9] Demetriou MD, Launey ME, Garrett G , et al. A damage-tolerant glass. Nature Materials, 2011,10(2):123
    [10] Ritchie RO . The conflicts between strength and toughness. Nature Materials, 2011,10(11):817-822
    [11] Wang G, Chan KC, Xia L , et al. Self-organized intermittent plastic flow in bulk metallic glasses. Acta Materialia, 2009,57(20):6146-6155
    [12] Zhu F, Hirata A, Liu P , et al. Correlation between local structure order and spatial heterogeneity in a metallic glass. Physical Review Letters, 2017,119(21):215501
    [13] Hwang J, Melgarejo Z, Kalay Y , et al. Nanoscale structure and structural relaxation in Zr$_{50}$Cu$_{45}$Al$_{5}$ bulk metallic glass. Physical Review Letters, 2012,108(19):195505
    [14] Zhang P, Maldonis JJ, Besser MF , et al. Medium-range structure and glass forming ability in Zr-Cu-Al bulk metallic glasses. Acta Materialia, 2016,109:103-114
    [15] Leocmach M, Tanaka H . Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nature Communications, 2012,3:974
    [16] Wang Q, Liu CT, Yang Y , et al. Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass. Physical Review Letters, 2011,106(21):215505.
    [17] Wang Q, Liu CT, Yang Y , et al. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Scientific Reports, 2014,4:4648
    [18] Wang Q, Yang Y, Jiang H , et al. Superior tensile ductility in bulk metallic glass with gradient amorphous structure. Scientific Reports, 2014, 4: 4757
    [19] Wang Q, Liu CT, Yang Y , et al. Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass. Physical Review Letters, 2011,106(21):215505
    [19] Van den Beukel A, Sietsma J . The glass transition as a free volume related kinetic phenomenon. Acta Metallurgica Et Materialia, 1990,38(3):383-389
    [20] Bhowmick R, Raghavan R, Chattopadhyay K , et al. Plastic flow softening in a bulk metallic glass. Acta Materialia, 2006,54(16):4221-4228
    [21] Sun Y, Concustell A, Greer AL . Thermomechanical processing of metallic glasses: Extending the range of the glassy state. Nature Reviews Materials, 2016,1(9):16039
    [22] Zhu ZG, Wen P, Wang DP , et al. Characterization of flow units in metallic glass through structural relaxations. Journal of Applied Physics, 2013,114(8):083512
    [23] Jiao W, Wen P, Bai HY , et al. Transiently suppressed relaxations in metallic glass. Applied Physics Letters, 2013,103(16):161902
    [24] Zhang Y, Wang WH, Greer AL . Making metallic glasses plastic by control of residual stress. Nature Materials, 2006,5(11):857-60
    [25] Gilbert CJ, Ritchie RO, Johnson WL . Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Applied Physics Letters, 1997,71(4):476-478
    [26] Han Q, Qu Z, Ye ZY , et al. Study on fracture toughness of mode I of shale based on micro-mechanical test. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1245-1254
    [27] Zhang ZJ, Cai LX, Chen H , et al. Spherical indentation method to determine stress-strain relations and tensile strength of metallic materials. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):159-169
    [28] Lowhaphandu P, Lewandowski JJ . Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Materialia, 1998,38(12):1811-1817
    [29] Demetriou MD, Kaltenboeck G, Suh JY , et al. Glassy steel optimized for glass-forming ability and toughness. Applied Physics Letters, 2009,95(4):041907
    [30] Garrett GR, Demetriou MD, Chen J , et al. Effect of microalloying on the toughness of metallic glasses. Applied Physics Letters, 2012,101(24):241913
    [31] Astm E1820-18, Standard Test Method for Measurement of Fracture Toughness, Astm International, West Conshohocken, PA, 2018, ww.astm.org .
    [32] Gludovatz B, Granata D, Thurston KV , et al. On the understanding of the effects of sample size on the variability in fracture toughness of bulk metallic glasses. Acta Materialia, 2017,126:494-506
    [33] Fujita K, Okamoto A, Nishiyama N , et al. Effects of loading rates, notch root radius and specimen thickness on fracture toughness in bulk metallic glasses. Journal of Alloys and Compounds, 2007,434:22-27
    [34] Hassan HA, Lewandowski JJ . Effects of mixed mode loading on the fracture toughness of bulk metallic glass/W composites. Materials Science and Engineering: A, 2013,586:413-417
    [35] Chen W, Liu Z, Ketkaew J , et al. Flaw tolerance of metallic glasses. Acta Materialia, 2016,107:220-228
    [36] Greer AL, Cheng YQ, Ma E . Shear bands in metallic glasses. Materials Science and Engineering: R, 2013,74(4):71-132
    [37] Ye XY, Liu CL, Cai LC , et al. A model of neutron irradiation embrittlement for metals. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1538-1544
  • 加载中
计量
  • 文章访问数:  630
  • HTML全文浏览量:  60
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-07
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回