EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B炸药爆炸过程中电磁辐射研究

任会兰 储著鑫 栗建桥 马天宝

任会兰, 储著鑫, 栗建桥, 马天宝. B炸药爆炸过程中电磁辐射研究[J]. 力学学报, 2020, 52(4): 1199-1210. doi: 10.6052/0459-1879-20-010
引用本文: 任会兰, 储著鑫, 栗建桥, 马天宝. B炸药爆炸过程中电磁辐射研究[J]. 力学学报, 2020, 52(4): 1199-1210. doi: 10.6052/0459-1879-20-010
Ren Huilan, Chu Zhuxin, Li Jianqiao, Ma Tianbao. RESEARCH ON ELECTROMAGNETIC RADIATION DURING THE EXPLOSION PROGRESS OF COMPOSITION B EXPLOSIVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1199-1210. doi: 10.6052/0459-1879-20-010
Citation: Ren Huilan, Chu Zhuxin, Li Jianqiao, Ma Tianbao. RESEARCH ON ELECTROMAGNETIC RADIATION DURING THE EXPLOSION PROGRESS OF COMPOSITION B EXPLOSIVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1199-1210. doi: 10.6052/0459-1879-20-010

B炸药爆炸过程中电磁辐射研究

doi: 10.6052/0459-1879-20-010
基金项目: 1)国家自然科学基金(11822203);国家自然科学基金(11802026)
详细信息
    通讯作者:

    马天宝

  • 中图分类号: TJ410.1

RESEARCH ON ELECTROMAGNETIC RADIATION DURING THE EXPLOSION PROGRESS OF COMPOSITION B EXPLOSIVES

  • 摘要: 炸药爆炸过程中产生明显的电磁辐射干扰在很多领域引起了重视, 爆炸产生电磁辐射的机理和理论模型都不成熟, 实验仍然是研究这一现象的重要手段. 本文设计了不同质量的B炸药爆炸电磁辐射实验, 测量了爆炸整个过程中不同时刻的电磁辐射信号. 通过小波分析方法对实测信号进行处理, 得到真实信号和信号的时频特点, 小波分析得到真实信号的频谱主要分布在0$\sim$50 kHz. 利用自主开发的EXPLOSION-3D软件对实验工况进行数值模拟, 得到爆炸过程不同时刻流场的特点. 对比实验结果和数值模拟结果得出: 第一个脉冲信号是由B炸药爆轰产生的高温高压等离子体直接产生的电磁脉冲; 第二个脉冲信号是由地面反射的冲击波追上前沿冲击波, 空气冲击波阵面处形成的等离子体产生的电磁脉冲; 第三个脉冲信号是冲击波撞击测量线圈引起的无效信号. 其中, 第一个电磁脉冲幅值与当量的1/3次方基本呈线性关系, 其到达时间对炸药药量不敏感; 第二个电磁脉冲出现的时间与炸药的当量成指数关系, 药量越大, 出现时间越晚. 通过对第二个脉冲信号的分析, 得出了冲击波反射形成电磁脉冲信号时的爆炸波流场特征, 为后续相关理论机理研究提供了验证数据.

     

  • [1] 曹景阳, 谢树果, 苏东林 等. 航天火工品爆炸引起的电磁干扰测量. 北京航空航天大学学报, 2011,37(11):1384-1394
    [1] ( Cao Jingyang, Xie Shuguo, Su Donglin, et al. Electromagnetic interference caused by aerospace explosives. Journal of Beijing University of Aeronautics and Astronautics, 2011,37(11):1384-1394 (in Chinese))
    [2] Boronin AP, Kapinos VN, Krenev SA, et al. Physical mechanism of electromagnetic field generation during the explosion of condensed explosive charges. Survey of literature. Combustion Explosion and Shock Waves, 1990,26(5):597-602
    [3] Fine JE. Estimates of the electromagnetic radiation from detonation of conventional explosives. Army Research Laboratory, 2001, ARL-TR-2447
    [4] Fine JE, Vinci SJ. Causes of electromagnetic radiation from detonation of conventional explosives: A literature survey. Army Research Laboratory, 1998, ARL-TR-1690
    [5] 戴晴, 何建国, 王尚武 等. 等离子体云团宽带电磁辐射源的实验研究. 强激光与粒子束, 2010,22(6):1399-1403
    [5] ( Dai Qing, He Jianguo, Wang Shangwu, et al. Experimental study on wideband electromagnetic radiation from plasma cloud. High Power Laser and Prticle Beams, 2010,22(6):1399-1403 (in Chinese))
    [6] Mende F. Electrodynamics and thermodynamics of nuclear explosions and TNT. LAP LAMBERT Academic Publishing, 2014
    [7] Kuhl AL, White DA, Kirkendall BA. Electromagnetic waves from TNT explosions. Journal of Electromagnetic Analysis and Applications, 2014,6(10):280-295
    [8] 陈鸿, 何勇, 潘绪超 等. 铝添加物对炸药爆轰过程中的电磁辐射影响实验研究. 科学发现, 2016,4(6):398-404
    [8] ( Chen Hong, He Yong, Pan Xuchao, et al. Experimental research on the effect of aluminum additive on the electromagnetic radiation in detonation process. Science Discovery, 2016,4(6):398-404 (in Chinese))
    [9] 栗建桥, 马天宝, 宁建国. 爆炸对自然磁场干扰机理. 力学学报, 2018,50(5):1206-1218
    [9] ( Li Jianqiao, Ma Tianbao, Ning Jianguo. Mechanism of explosion-induced disturbance in natural magnetic field. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1206-1218 (in Chinese))
    [10] Kolsky H. Electromagnetic waves emitted on detonation of Explosives. Nature, 1954,173(4393):77
    [11] Takakura T. Radio noise radiated on the detonation of explosive. Publications-Astronomical Society of Japan, 1995,7(4):210-220
    [12] Cook MA. The Science of High Explosives. New York: Reinhold Publishing Corporation, 1958: 440
    [13] Gorshunov LM, Kononenko GP, Sirotnin EI. Electromagnetic disturbances accompanying explosions. Soviet Physics JEPT, 1968,26(3):500-502
    [14] Walker CW. Observations of the electromagnetic signals from high explosive detonation. Lawrence Radiation Laboratory Report, 1970, UCRL-72150
    [15] Soloviev SP, Surkov VV, Sweeney JJ. Quadrupolar electromagnetic field from detonation of high explosive charges on the ground surface. Journal of Geophysical Research Solid Earth, 2002, 107(B6): ESE4-1-ESE4-12
    [16] Harlin J, Nemzek R. Physical properties of conventional explosives deduced from radio frequency emissions. Propellants Explosives Pyrotechnics, 2009,34(6):544-550
    [17] Nemzek , Robert J, Stephen J, et al. Ten trials at lower slobbovia: Searching for repetitive electromagnetic and seismoacoustic signatures in explosions. Los Alamos National Lab, 2013, LA-UR-13-22138
    [18] 王长利, 周刚, 蔡宗义 等. 带壳装药热爆炸冲击波超压测量及分析. 兵工学报, 2012,33(5):574-578
    [18] ( Wang Changli, Zhou Gang, Cai Zongyi, et al. Measurement and analysis of shock wave overpressure of thermal explosion of charge with shell. Acta Armamentarii, 2012,33(5):574-578 (in Chinese))
    [19] 王长利, 李迅, 刘晓新 等. 典型炸药爆炸过程的电磁辐射实验研究. 兵工学报, 2014,35(S2):188-192
    [19] ( Wang Changli, Li Xun, Liu Xiaoxin, et al. The experimental research on the electromagnetic radiation aroused by detonation of explosive. Acta Armamentarii, 2014,35(S2):188-192 (in Chinese))
    [20] Sharif MI, Li JP, Sharif A. A noise reduction based wavelet denoising dystem for partial discharge signal. Wireless Personal Communications, 2019(108):1329-1343
    [21] 张阳峰, 韦仕鸿, 邓娜娜 等. 基于小波降噪的振动传感器数据分析. 计算机科学, 2019,46(6A):537-539, 565
    [21] ( Zhang Yangfeng, Wei Shihong, Deng Nana, et al. Vibration sensor data analysis based on wavelet denoising. Computer Science, 2019,46(6A):537-539, 565 (in Chinese))
    [22] 马天宝, 任会兰, 李健 等. 爆炸与冲击问题的大规模高精度计算. 力学学报, 2016,48(3):599-608
    [22] ( Ma Tianbao, Ren Huilan, Li Jian, et al. Large scale high precision computation for explosion and impact problems. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(3):599-608 (in Chinese))
    [23] 姚成宝, 王宏亮, 浦锡锋 等. 空中强爆炸冲击波地面反射规律数值模拟研究. 爆炸与冲击, 2019,39(11):112201-1
    [23] ( Yao Chengbao, Wang Hongliang, Pu Xifeng, et al. Numerical simulation of intense blast wave reflected on rigid ground. Explosion and Shock Waves, 2019,39(11):112201-1 (in Chinese))
    [24] 吴赛, 赵均海, 张冬芳 等. 自由空气中爆炸冲击波的数值分析. 工程爆破, 2019,25(3):1-6, 31
    [24] ( Wu Sai, Zhao Junhai, Zhang Dongfang, et al. Numerical simulation of intense blast wave reflected on rigid ground. Engineering Blasting, 2019,25(3):1-6, 31 (in Chinese))
    [25] 何涛. 基于ALE有限元法的流固耦合强耦合数值模拟. 力学学报, 2018,50(2):395-404
    [25] ( He Tao. A partitioned strong coupling algorith for fluid-structure interaction using arbitrary lagrangian-eulerian finite eleent forulation. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):395-404 (in Chinese))
    [26] 唐恩凌, 唐伟富, 相升海 等. 超高速碰撞产生弱磁场线圈测量系统. 强激光与粒子束, 2010,22(5):1132-1136
    [26] ( Tang Enling, Tang Weifu, Xiang Shenghai, et al. Coil measurement system for weak magnetic field generated by hypervelocity impact. High Power Laser and Particle Beams, 2010,22(5):1132-1136 (in Chinese))
    [27] 麻智超, 谢树果, 曹景阳. 基于小波变换的聚能爆炸电磁辐射分析. 火工品, 2010(5):26-29
    [27] ( Ma Zhichao, Xie Shuguo, Cao Jingyang. Analysis of electromagnetic radiation from explosion of shaped charge by wavelet transform. Initiators & Pyrotechnics, 2010(5):26-29 (in Chinese))
    [28] 王宗炼, 任会兰, 宁建国. 基于小波变换降噪的声发射源定位方法. 振动与冲击, 2018,37(4):226-232
    [28] ( Wang Zonglian, Ren Huilan, Ning Jianguo. Acoustic emission source location based on wavelet transform de-noising. Journal of Vibration and Shock, 2018,37(4):226-232 (in Chinese))
    [29] 任会兰, 宁建国, 宋水舟 等. 基于声发射矩张量分析混凝土破坏的裂纹运动. 力学学报, 2019,51(6):1830-1840
    [29] ( Ren Huilan, Ning Jianguo, Song Shuizhou, et al. Investigation on crack growth in concrete by moment tensor analysis of acoustic emission. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1830-1840 (in Chinese))
    [30] 吴艳, 张蓉竹. 小波阈值降噪算法在光电探测器信号处理中的应用. 光子学报, 2019,48(10):1004004-1
    [30] ( Wu Yang, Zhang Rongzhu. Application of wavelet threshold denoising algorithm in photodetectors signal processing. Acta Photonica Sinica, 2019,48(10):1004004-1 (in Chinese))
    [31] 戴晴, 李传胪, 陈国强 等. 低温等离子体激励宽带电磁波信号的实验研究. 电子信息对抗技术, 2009,24(5):72-74
    [31] ( Dai Qing, Li Chuanlu, Chen Guoqiang, et al. Experimentalstudy of wideband electromagnetic radiation from plasma cloud. Electronic Information Warfare Technology, 2009,24(5):72-74 (in Chinese))
    [32] 杨亚东, 李向东, 王晓鸣. 爆炸冲击波空中传播特征参量的优化拟合. 爆破器材, 2014,43(1):13-18
    [32] ( Yang Yadong, Li Xiangdong, Wang Xiaoming. Optimum fitting for characteristic parameters of blast shockwaves traveling in air. Explosive Materials, 2014,43(1):13-18 (in Chinese))
    [33] Ning JG, Ma TB, Fei GL. Multi-material eulerian method and parallel computation for 3D explosion and impact problems. International Journal of Computational Methods, 2014, 11(5): 1350079-1-15
    [34] Xu XZ, Ma TB, Ning JG. Failure analytical model of reinforced concrete slab under impact loading. Construction and Building Material, 2019, ( 223):679-691
    [35] Xu XZ, Ma TB, Liu HY, et al. A three-dimensional coupled Euler-PIC method for penetration problems. International Journal for Numerical Methods in Engineering, 2019,119(8):737-756
    [36] 任会兰, 宁建国, 许香照. 不同炸药量在工事中爆炸的三维数值模拟. 高压物理学报, 2013,27(2):216-222
    [36] ( Ren Huilan, Ning Jianguo, Xu Xiangzhao. The 3-D numerical simulation for different explosive charges in the fortifications. Chinese Journal of High Pressure Physics, 2013,27(2):216-222 (in Chinese))
    [37] Huang SH, Wang WR, Luo XS. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interfaceat extreme compressing conditions. Physics of Plasmas, 2018,25:062705-1
    [38] 张嘉炜, 黄生洪. 极端冲击下激波诱导附加电场加速金属/气体界面的经验模型. 高压物理学报, 2019,33(1):012301-1
    [38] ( Zhang Jiawei, Huang Shenghong. Acceleration evaluation model of metal/gas interface by extra electric field induced by shock under extreme impacting conditions. Chinese Journal of High Pressure Physics, 2019,33(1):012301-1 (in Chinese))
    [39] Li JQ, Hao L, Li J. Theoretical modeling and numerical simulations of plasmas generated by shock waves. Sci China Tech Sci, 2019,62(12):2204-2212
  • 加载中
计量
  • 文章访问数:  2256
  • HTML全文浏览量:  463
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回